2024届湖南省邵阳市邵阳县第一中学数学高一第二学期期末统考试题含解析_第1页
2024届湖南省邵阳市邵阳县第一中学数学高一第二学期期末统考试题含解析_第2页
2024届湖南省邵阳市邵阳县第一中学数学高一第二学期期末统考试题含解析_第3页
2024届湖南省邵阳市邵阳县第一中学数学高一第二学期期末统考试题含解析_第4页
2024届湖南省邵阳市邵阳县第一中学数学高一第二学期期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省邵阳市邵阳县第一中学数学高一第二学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,的夹角为,且,,则与的夹角等于A. B. C. D.2.某次运动会甲、乙两名射击运动员成绩如右图所示,甲、乙的平均数分别为为、,方差分别为,,则()A. B.C. D.3.等比数列中,,则等于是()A. B.4 C. D.4.已知为锐角,且满足,则()A. B. C. D.5.如图,在直三棱柱中,,,,则异面直线与所成角的余弦值是()A. B. C. D.6.已知直线是平面的斜线,则内不存在与(

)A.相交的直线 B.平行的直线C.异面的直线 D.垂直的直线7.在中,,,,则的面积是().A. B. C.或 D.或8.圆关于原点对称的圆的方程为()A. B.C. D.9.已知,,,,则下列等式一定成立的是()A. B. C. D.10.已知集合A={x︱x>-2}且,则集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.二、填空题:本大题共6小题,每小题5分,共30分。11.在梯形中,,,设,,则__________(用向量表示).12.在△ABC中,内角A、B、C所对的边分别为a、b、c,若,则_____.13.执行如图所示的程序框图,则输出的结果为__________.14.若等比数列的各项均为正数,且,则等于__________.15.等比数列{an}中,a1<0,{an}是递增数列,则满足条件的q的取值范围是______________.16.若为锐角,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=sin22x-π4(1)求当t=1时,求fπ(2)求gt(3)当-12≤t≤1时,要使关于t的方程g(t)=18.已知,.(1)求;(2)求.19.如图,是的直径,所在的平面,是圆上一点,,.(1)求证:平面平面;(2)求直线与平面所成角的正切值.20.某网站推出了关于扫黑除恶情况的调查,调查数据表明,扫黑除恶仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注扫黑除恶的人群中随机选出人,并将这人按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.(1)求出的值;(2)求这人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位).21.如图,在四棱锥中,,底面为平行四边形,平面.()求证:平面;()若,,,求三棱锥的体积;()设平面平面直线,试判断与的位置关系,并证明.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

根据条件即可求出,从而可求出,,,然后可设与的夹角为,从而可求出,根据向量夹角的范围即可求出夹角.【题目详解】,;,,;设与的夹角为,则;又,,故选.【题目点拨】本题主要考查向量数量积的定义运用,向量的模的求法,以及利用数量积求向量夹角.2、C【解题分析】试题分析:,;,,故选C.考点:茎叶图.【易错点晴】本题考查学生的是由茎叶图中的数据求平均数和方差,属于中档题目.由茎叶图观察数据,用茎表示成绩的整数环数,叶表示小数点后的数字,利用平均值公式及标准差公式求出两个样本的平均数和方差,一般平均数反映的是一组数据的平均水平,平均数越大,则该名运动员的平均成绩越高;方差式用来描述一组数据的波动大小的指标,方差越小,说明数据波动越小,即该名运动员的成绩越稳定.3、B【解题分析】

利用等比数列通项公式直接求解即可.【题目详解】因为是等比数列,所以.故选:B【题目点拨】本题考查了等比数列通项公式的应用,属于基础题.4、D【解题分析】

由,得,,即可得到本题答案.【题目详解】由,得,所以,,所以.故选:D【题目点拨】本题主要考查两角和的正切公式的应用以及特殊角的三角函数值.5、D【解题分析】连结,∵,

∴是异面直线与所成角(或所成角的补角),

∵在直三棱柱中,,,,

∴,,,,

∴,

∴异面直线与所成角的余弦值为,故选D.6、B【解题分析】

根据平面的斜线的定义,即可作出判定,得到答案.【题目详解】由题意,直线是平面的斜线,由斜线的定义可知与平面相交但不垂直的直线叫做平面的斜线,所以在平面内肯定不存在与直线平行的直线.故答案为:B【题目点拨】本题主要考查了直线与平面的位置关系的判定及应用,其中解答中熟记平面斜线的定义是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7、C【解题分析】,∴,或.()当时,.∴.()当时,.∴.故选.8、D【解题分析】

根据已知圆的方程可得其圆心,进而可求得其关于原点对称点,利用圆的标准方程即可求解.【题目详解】由圆,则圆心为,半径,圆心为关于原点对称点为,所以圆关于原点对称的圆的方程为.故选:D【题目点拨】本题考查了根据圆心与半径求圆的标准方程,属于基础题.9、B【解题分析】试题分析:相除得,又,所以.选B.【考点定位】指数运算与对数运算.10、D【解题分析】

A、B={x|x>2或x<-2},

∵集合A={x|x>-2},

∴A∪B={x|x≠-2}≠A,不合题意;

B、B={x|x≥-2},

∵集合A={x|x>-2},

∴A∪B={x|x≥-2}=B,不合题意;

C、B={y|y≥-2},

∵集合A={x|x>-2},

∴A∪B={x|x≥-2}=B,不合题意;

D、若B={-1,0,1,2,3},

∵集合A={x|x>-2},

∴A∪B={x|x>-2}=A,与题意相符,

故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据向量减法运算得结果.【题目详解】利用向量的三角形法则,可得,,又,,则,.故答案为.【题目点拨】本题考查向量表示,考查基本化解能力12、【解题分析】

先利用同角三角函数的商数关系可得,再结合正弦定理及余弦定理化简可得,然后求解即可.【题目详解】解:因为,则,所以,即,所以,则,即,即即,故答案为:.【题目点拨】本题考查了同角三角函数的商数关系,重点考查了正弦定理及余弦定理的应用,属中档题.13、1【解题分析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出变量i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【题目详解】模拟程序的运行,可得

S=1,i=1

满足条件S<40,执行循环体,S=3,i=2

满足条件S<40,执行循环体,S=7,i=3

满足条件S<40,执行循环体,S=15,i=4

满足条件S<40,执行循环体,S=31,i=5

满足条件S<40,执行循环体,S=13,i=1

此时,不满足条件S<40,退出循环,输出i的值为1.

故答案为:1.【题目点拨】本题主要考查的是程序框图,属于基础题.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.14、50【解题分析】由题意可得,=,填50.15、【解题分析】试题分析:由题意可得,∴,解得0<q<1考点:等比数列的性质16、【解题分析】因为为锐角,,所以,.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-4(2)g(t)=t2【解题分析】

(1)直接代入计算得解;(2)先求出sin(2x-π4)∈[-12,1]【题目详解】(1)当t=1时,f(x)=sin22x-(2)因为x∈[π24,πf(x)=[sin(2x-当t<-12时,则当sin当-12≤t≤1时,则当当t>1时,则当sin(2x-π故g(t)=(3)当-12≤t≤1时,g(t)=-6t+1,令欲使g(t)=kt2-9有一个实根,则只需h(-解得k≤-2或所以k的范围:(-【题目点拨】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.18、(1),(2)【解题分析】

(1)由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值(2)由题意利用二倍角公式,求得原式子的值.【题目详解】(1)∵已知,,,∴则(2)【题目点拨】本题主要考查同角三角函数的基本关系,两角和差的三角公式、二倍角公式的应用,以及三角函数在各个象限中的符号,属于基础题.19、(1)证明见解析;(2)2.【解题分析】

(1)首先证明平面,利用线面垂直推出平面平面;(2)找到直线与平面所成角所在三角形,利用三角形边角关系求解即可.【题目详解】(1)∵是直径,∴,即,又∵所在的平面,在所在的平面内,∴,∴平面,又平面,∴平面平面;(2)∵平面,∴直线与平面所成角即,设,∵,∴,∴,∴.【题目点拨】本题主要考查了面面垂直的证明,直线与平面所成角的求解,属于一般题.20、(1)0.035(2)平均数为:41.5岁中位数为:42.1岁【解题分析】

(1)根据频率之和为1,结合题中条件,直接列出式子计算,即可得出结果;(2)根据每组的中间值乘该组的频率再求和,即可得出平均数;根据中位数两边的频率之和相等,即可求出中位数.【题目详解】(1)由题意可得:,解得;(2)由题中数据可得:岁,设中位数为,则,∴岁.【题目点拨】本题主要考查完善频率分布直方图,以及由频率分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论