上海市香山中学2024届数学高一下期末预测试题含解析_第1页
上海市香山中学2024届数学高一下期末预测试题含解析_第2页
上海市香山中学2024届数学高一下期末预测试题含解析_第3页
上海市香山中学2024届数学高一下期末预测试题含解析_第4页
上海市香山中学2024届数学高一下期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市香山中学2024届数学高一下期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列{an}为等差数列,Sn是它的前n项和.若=2,S3=12,则S4=()A.10 B.16 C.20 D.242.设△ABC的内角A,B,C所对的边分别为a,b,c,若,则的形状一定是()A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形3.已知中,,,的对边分别是,,,且,,,则边上的中线的长为()A. B.C.或 D.或4.在中,角A,B,C的对边分别为a,b,c,若,则角=()A. B. C. D.5.将甲、乙两个篮球队5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是()A.甲队平均得分高于乙队的平均得分中乙B.甲队得分的中位数大于乙队得分的中位数C.甲队得分的方差大于乙队得分的方差D.甲乙两队得分的极差相等6.某型号汽车使用年限与年维修费(单位:万元)的统计数据如下表,由最小二乘法求得回归方程.现发现表中有一个数据看不清,推测该数据的值为()使用年限维修费A. B.C. D.7.已知,是两条不同的直线,,是两个不同的平面,给出下列四个结论:①,,,则;②若,,,则;③若,,,则;④若,,,则.其中正确结论的序号是A.①③ B.②③ C.①④ D.②④8.已知内角,,所对的边分别为,,且满足,则=()A. B. C. D.9.如图,是的直观图,其中轴,轴,那么是()A.等腰三角形 B.钝角三角形 C.等腰直角三角形 D.直角三角形10.若,,则的最小值为()A.2 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实一为从陽,开平方得积.”如果把以上这段文字写成公式就是,其中是的内角的对边为.若,且,则面积的最大值为________.12.某海域中有一个小岛(如图所示),其周围3.8海里内布满暗礁(3.8海里及以外无暗礁),一大型渔船从该海域的处出发由西向东直线航行,在处望见小岛位于北偏东75°,渔船继续航行8海里到达处,此时望见小岛位于北偏东60°,若渔船不改变航向继续前进,试问渔船有没有触礁的危险?答:______.(填写“有”、“无”、“无法判断”三者之一)13.在轴上有一点,点到点与点的距离相等,则点坐标为____________.14.已知为第二象限角,且,则_________.15.记等差数列的前项和为,若,则________.16.在中,角所对的边分别为,若,则=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量垂直于向量,向量垂直于向量.(1)求向量与的夹角;(2)设,且向量满足,求的最小值;(3)在(2)的条件下,随机选取一个向量,求的概率.18.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据.x681012y2356(1)请根据上表提供的数据,求出y关于x的线性回归方程;(2)判断该高三学生的记忆力x和判断力是正相关还是负相关;并预测判断力为4的同学的记忆力.(参考公式:)19.如图,在四棱锥中,,底面是矩形,侧面底面,是的中点.(1)求证:平面;(2)求证:平面.20.已知函数.(1)判断函数奇偶性;(2)讨论函数的单调性;(3)比较与的大小.21.一个工厂在某年里连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:x1.081.121.191.281.361.481.591.681.801.87y2.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;(2)①建立月总成本y与月产量x之间的回归方程;②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:=14.45,=27.31,=0.850,=1.042,=1.1.②参考公式:相关系数:r=.回归方程=x+中斜率和截距的最小二乘估计公式分别为:=,=-

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

根据等差数列的前n项和公式,即可求出.【题目详解】因为S3=3+d=6+3d=12,解得d=2,所以S4=4+d=20.【题目点拨】本题主要考查了等差数列的前n项和公式,属于中档题.2、C【解题分析】

将角C用角A角B表示出来,和差公式化简得到答案.【题目详解】△ABC的内角A,B,C所对的边分别为a,b,c,角A,B,C为△ABC的内角故答案选C【题目点拨】本题考查了三角函数和差公式,意在考查学生的计算能力.3、C【解题分析】

由已知利用余弦定理可得,解得a值,由已知可求中线,在中,由余弦定理即可计算AB边上中线的长.【题目详解】解:,由余弦定理,可得,整理可得:,解得或1.如图,CD为AB边上的中线,则,在中,由余弦定理,可得:,或,解得AB边上的中线或.故选C.【题目点拨】本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.4、A【解题分析】

由正弦定理可解得,利用大边对大角可得范围,从而解得A的值.【题目详解】,由正弦定理可得:,,由大边对大角可得:,解得:.故选A.【题目点拨】本题主要考查了正弦定理,大边对大角,正弦函数的图象和性质等知识的应用,解题时要注意分析角的范围.5、C【解题分析】

由茎叶图分别计算甲、乙的平均数,中位数,方差及极差可得答案.【题目详解】29;30,∴∴A错误;甲的中位数是29,乙的中位数是30,29<30,∴B错误;甲的极差为31﹣26=5,乙的极差为32﹣28=4,5∴D错误;排除可得C选项正确,故选C.【题目点拨】本题考查了由茎叶图求数据的平均数,极差,中位数,运用了选择题的做法即排除法的解题技巧,属于基础题.6、C【解题分析】

设所求数据为,计算出和,然后将点代入回归直线方程可求出的值.【题目详解】设所求数据为,则,,由于回归直线过样本的中心点,则有,解得,故选:C.【题目点拨】本题考查利用回归直线计算原始数据,解题时要充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.7、C【解题分析】

利用面面垂直的判定定理判断①;根据面面平行的判定定理判断②;利用线面垂直和线面平行的性质判断③;利用线面垂直和面面平行的性质判断④【题目详解】①,,或,又,则成立,故正确②若,,或和相交,并不一定平行于,故错误③若,,则或,若,则并不一定平行于,故错误④若,,,又,成立,故正确综上所述,正确的命题的序号是①④故选【题目点拨】本题主要考查了命题的真假判断和应用,解题的关键是理解线面,面面平行与垂直的判断定理和性质定理,属于基础题.8、A【解题分析】

利用正弦定理以及和与差的正弦公式可得答案;【题目详解】∵0<A<π,∴sinA≠0由atanA=bcosC+ccosB,根据正弦定理:可得sinA•tanA=sinBcosC+sinCcosB=sin(B+C)=sinA∴•tanA=1;∴tanA,那么A;故选A.【题目点拨】本题考查三角形的正弦定理,,内角和定理以及和与差正弦公式的运用,考查运算能力,属于基础题.9、D【解题分析】

利用斜二测画法中平行于坐标轴的直线,平行关系不变这个原则得出的形状.【题目详解】在斜二测画法中,平行于坐标轴的直线,平行关系不变,则在原图形中,轴,轴,所以,,因此,是直角三角形,故选D.【题目点拨】本题考查斜二测直观图还原,解题时要注意直观图的还原原则,并注意各线段长度的变化,考查分析能力,属于基础题.10、D【解题分析】

根据所给等量关系,用表示出可得.代入中,构造基本不等式即可求得的最小值.【题目详解】因为,所以变形可得所以由基本不等式可得当且仅当时取等号,解得所以的最小值为故选:D【题目点拨】本题考查了基本不等式求最值的应用,注意构造合适的基本不等式形式,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据正弦定理和余弦定理,由可得,再由及函数求最值的知识,即可求解.【题目详解】,又,,时,面积的最大值为.故答案为:【题目点拨】本题主要考查了正弦定理、余弦定理在解三角形中的应用,考查了理解辨析能力与运算求解能力,属于中档题.12、无【解题分析】

可过作的延长线的垂线,垂足为,结合角度关系可判断为等腰三角形,再通过的边角关系即可求解,判断与3.8的大小关系即可【题目详解】如图,过作的延长线的垂线,垂足为,在中,,,则,所以为等腰三角形。,又,所以,,所以渔船没有触礁的危险故答案为:无【题目点拨】本题考查三角函数在生活中的实际应用,属于基础题13、【解题分析】

设点的坐标,根据空间两点距离公式列方程求解.【题目详解】由题:设,点到点与点的距离相等,所以,,,解得:,所以点的坐标为.故答案为:【题目点拨】此题考查空间之间坐标系中两点的距离公式,根据公式列方程求解点的坐标,关键在于准确辨析正确计算.14、.【解题分析】

先由求出的值,再利用同角三角函数的基本关系式求出、即可.【题目详解】因为为第二象限角,且,所以,解得,再由及为第二象限角可得、,此时.故答案为:.【题目点拨】本题主要考查两角差的正切公式及同角三角函数的基本关系式的应用,属常规考题.15、10【解题分析】

由等差数列求和的性质可得,求得,再利用性质可得结果.【题目详解】因为,所以,所以,故故答案为10【题目点拨】本题考查了等差数列的性质,熟悉其性质是解题的关键,属于基础题.16、【解题分析】根据正弦定理得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解题分析】

(1)根据向量的垂直,转化出方程组,求解方程组即可;(2)将向量赋予坐标,求得向量对应点的轨迹方程,将问题转化为圆外一点,到圆上一点的距离的最值问题,即可求解;(3)根据余弦定理,解得,以及的临界状态时,对应的圆心角的大小,利用几何概型的概率计算公式,即可求解.【题目详解】(1)因为故可得,解得①②由①-②可得,解得,将其代入①可得,即将其代入②可得解得,又向量夹角的范围为,故向量与的夹角为.(2)不妨设,由可得.不妨设的起始点为坐标原点,终点为C.因此,点C落在以)为圆心,1为半径的圆上(如图).因为,即由圆的特点可知的最小值为,即:.(3)当时,因为,,满足勾股定理,故容易得.当时,假设此时点落在如图所示的F点处.如图所示.因为,由余弦定理容易得,故.所以,本题化为,在半圆上任取一点C,点C落在弧CF上的概率.由几何概型的概率计算可知:的概率即为圆心角的弧度除以,即.【题目点拨】本题考查向量垂直时数量积的表示,以及利用解析的手段解决向量问题的能力,还有几何概型的概率计算,涉及圆方程的求解,以及余弦定理.本题属于综合题,值得总结.18、(1)(2)该高三学生的记忆力x和判断力是正相关;判断力为4的同学的记忆力约为9【解题分析】

(1)根据所给数据和公式计算回归方程的系数,注意回归直线过中心点,得回归方程;(2)根据回归系数的正负可得正相关还是负相关,令代入可得估计值.【题目详解】(1),,,,,,故线性回归方程为.(2)因为,故可以判断,该高三学生的记忆力x和判断力是正相关;由回归直线方程预测,判断力为4的同学的记忆力约为9.【题目点拨】本题考查求线性回归直线方程,考查变量的相关性及回归方程的应用.回归方程中的系数的正负说明两数据的正负相关,系数为正,则为正相关,系数为负,则为负相关.19、(1)证明见解析;(2)证明见解析.【解题分析】

(1)利用即可证明;(2)由面面垂直的性质即可证明.【题目详解】证明:(1)在四棱锥中,底面是矩形,,又平面,平面;平面;(2)侧面底面,侧面平面,,平面,平面【题目点拨】本题考查了空间线面平行、垂直的证明,属于基础题.20、(1)是偶函数(2)见解析(3)【解题分析】

(1)由奇偶函数的定义判断;(2)由单调性的定义证明;(3)由于函数为偶函数,因此只要比较与的大小,因此先确定与的大小,这就得到分类标准.【题目详解】(1)是偶函数(2)当时,是增函数;当时,是减函数;先证明当时,是增函数证明:任取,且,则,且,,即:当时,是增函数∵是偶函数,∴当时,是减函数.(3)要比较与的大小,∵是偶函数,∴只要比较与大小即可.当时,即时,∵当时,是增函数,∴当时,即当时,∵当时,是增函数,∴【题目点拨】本题考查函数的奇偶性与单调性,掌握奇偶性与单调性的定义是解题基础.21、(1)见解析;(2)①;②3.385万元.【解题分析】

(1)由已知条件利用公式,求得的值,再与比较大小即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论