河北省秦皇岛市青龙满族自治县木头凳中学2024届数学高一下期末教学质量检测模拟试题含解析_第1页
河北省秦皇岛市青龙满族自治县木头凳中学2024届数学高一下期末教学质量检测模拟试题含解析_第2页
河北省秦皇岛市青龙满族自治县木头凳中学2024届数学高一下期末教学质量检测模拟试题含解析_第3页
河北省秦皇岛市青龙满族自治县木头凳中学2024届数学高一下期末教学质量检测模拟试题含解析_第4页
河北省秦皇岛市青龙满族自治县木头凳中学2024届数学高一下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省秦皇岛市青龙满族自治县木头凳中学2024届数学高一下期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角、是的内角,则“”是“”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件2.执行如下图所示的程序框图,若输出的,则输入的的值为()A. B. C. D.3.在ΔABC中,角A、B、C所对的边分别为a、b、c,A=45°,B=30°,b=2,则a=()A.2 B.63 C.224.设m>1,在约束条件y≥xA.1,1+2C.(1,3) D.(3,+∞)5.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.6.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A. B. C. D.7.如图所示,某汽车品牌的标志可看作由两个同心圆构成,其中大、小圆的半径之比为,小圆内部被两条互相垂直的直径分割成四块.在整个图形中任选一点,则该点选自白色部分的概率为()A. B. C. D.8.在某项体育比赛中,七位裁判为一选手打出的分数如下:90,89,90,95,93,94,93,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A.92,2 B.92,2.8 C.93,2 D.93,2.89.已知直线倾斜角的范围是,则此直线的斜率的取值范围是()A. B.C. D.10.已知函数f(x),则f[f(2)]=()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.设偶函数的部分图像如图所示,为等腰直角三角形,,则的值为________.12.已知函数,,的图象如下图所示,则,,的大小关系为__________.(用“”号连接)13.设是等差数列的前项和,若,则________14.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为________.15.某几何体是由一个正方体去掉一个三棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积是___16.某班级有50名学生,现用系统抽样的方法从这50名学生中抽出10名学生,将这50名学生随机编号为1~5号,并按编号顺序平均分成10组(1~5号,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面是正方形,底面,点是的中点,点是和的交点.(1)证明:平面;(2)求三棱锥的体积.18.已知向量,,.(1)求函数的最小正周期及单调递减区间;(2)记的内角的对边分别为.若,,求的值.19.如图,四棱锥中,是正三角形,四边形ABCD是矩形,且平面平面.(1)若点E是PC的中点,求证:平面BDE;(2)若点F在线段PA上,且,当三棱锥的体积为时,求实数的值.20.(1)设,直接用任意角的三角比定义证明:.(2)给出两个公式:①;②.请仅以上述两个公式为已知条件证明:.21.已知,,分别为三个内角,,的对边,.(1)求角的大小;(2)若,的面积为,求边,.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

结合正弦定理,利用充分条件和必要条件的定义进行判断【题目详解】在三角形中,根据大边对大角原则,若,则,由正弦定理得,充分条件成立;若,由可得,根据大边对大角原则,则,必要条件成立;故在三角形中,“”是“”的充要条件故选:C【题目点拨】本题考查充分条件与必要条件的应用,利用正弦定理确定边角关系,三角形大边对大角原则应谨记,属于基础题2、D【解题分析】由题意,当输入,则;;;,终止循环,则输出,所以,故选D.3、C【解题分析】

利用正弦定理得到答案.【题目详解】asin故答案选C【题目点拨】本题考查了正弦定理,意在考查学生的计算能力.4、A【解题分析】试题分析:∵,故直线与直线交于点,目标函数对应的直线与直线垂直,且在点,取得最大值,其关系如图所示:即,解得,又∵,解得,选:A.考点:简单线性规划的应用.【方法点睛】本题考查的知识点是简单线性规划的应用,我们可以判断直线的倾斜角位于区间上,由此我们不难判断出满足约束条件的平面区域的形状,其中根据平面直线方程判断出目标函数对应的直线与直线垂直,且在点取得最大值,并由此构造出关于的不等式组是解答本题的关键.5、B【解题分析】

该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体,由体积公式直接求解.【题目详解】该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体.∴该几何体的体积V64.故选:B.【题目点拨】本题考查了正方体与圆锥的组合体的三视图还原问题及体积计算公式,考查了推理能力与计算能力,属于基础题.6、B【解题分析】试题分析:如图,取中点,连接,因为是中点,则,或其补角就是异面直线所成的角,设正四面体棱长为1,则,,.故选B.考点:异面直线所成的角.【名师点睛】求异面直线所成的角的关键是通过平移使其变为相交直线所成角,但平移哪一条直线、平移到什么位置,则依赖于特殊的点的选取,选取特殊点时要尽可能地使它与题设的所有相减条件和解题目标紧密地联系起来.如已知直线上的某一点,特别是线段的中点,几何体的特殊线段.7、B【解题分析】

设大圆半径为,小圆半径为,求出白色部分面积和大圆面积,由几何概型概率公式可得.【题目详解】设大圆半径为,小圆半径为,则整个图形的面积为,白色部分的面积为,所以所求概率.故选:B.【题目点拨】本题考查几何概型,考查面积型的几何概型,属于基础题.8、B【解题分析】

由平均数与方差的计算公式,计算90,90,93,94,93五个数的平均数和方差即可.【题目详解】90,89,90,95,93,94,93,去掉一个最高分和一个最低分后是90,90,93,94,93,所以其平均数为,因此方差为.故选B【题目点拨】本题主要考查平均数与方差的计算,熟记公式即可,属于基础题型.9、B【解题分析】

根据直线的斜率等于倾斜角的正切值求解即可.【题目详解】因为直线倾斜角的范围是,又直线的斜率,.故或.故.故选:B【题目点拨】本题主要考查了直线斜率与倾斜角的关系,属于基础题.10、B【解题分析】

根据分段函数的表达式求解即可.【题目详解】由题.故选:B【题目点拨】本题主要考查了分段函数的求值,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】的部分图象如图所示,为等腰直角三角形,,,函数是偶函数,,函数的解析式为,故答案为.【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.利用最值求出,利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求使解题的关键.求解析时求参数是确定函数解析式的关键,往往利用特殊点求的值,由特殊点求时,一定要分清特殊点是“五点法”的第几个点.12、【解题分析】函数y=ax,y=xb,y=logcx的图象如图所示,由指数函数y=ax,x=2时,y∈(1,2);对数函数y=logcx,x=2,y∈(0,1);幂函数y=xb,x=2,y∈(1,2);可得a∈(1,2),b∈(0,1),c∈(2,+∞).可得b<a<c故答案为:b<a<c.13、5【解题分析】

由等差数列的前和公式,求得,再结合等差数列的性质,即可求解.【题目详解】由题意,根据等差数列的前和公式,可得,解得,又由等差数列的性质,可得.故答案为:.【题目点拨】本题主要考查了等差数列的性质,以及等差数列的前和公式的应用,其中解答中熟记等差数列的性质,以及合理应用等差数列的前和公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解题分析】

求出的垂直平分线方程,两垂直平分线交点为外接圆圆心.再由两点间距离公式计算.【题目详解】由点B(0,),C(2,),得线段BC的垂直平分线方程为x=1,①由点A(1,0),B(0,),得线段AB的垂直平分线方程为②联立①②,解得△ABC外接圆的圆心坐标为,其到原点的距离为.故答案为:【题目点拨】本题考查三角形外接圆圆心坐标,外心是三角形三条边的中垂线的交点,到三顶点距离相等.15、6【解题分析】

先作出几何体图形,再根据几何体的体积等于正方体的体积减去三棱柱的体积计算.【题目详解】几何体如图所示:去掉的三棱柱的高为2,底面面积是正方体底面积的,所以三棱柱的体积:所以几何体的体积:【题目点拨】本题考查三视图与几何体的体积.关键是作出几何体的图形,方法:先作出正方体的图形,再根据三视图“切”去多余部分.16、33【解题分析】试题分析:因为是从50名学生中抽出10名学生,组距是5,∵第三组抽取的是13号,∴第七组抽取的为13+4×5=33.考点:系统抽样三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】

(1)在中,利用中位线性质得到,证明平面.(2)直接利用体积公式得到答案.【题目详解】在中,点是的中点,底面是正方形点为中点根据中位线性质得到,平面,故平面.(2)底面【题目点拨】本题考查了线面平行,三棱锥体积,意在考查学生的计算能力和空间想象能力.18、(1)最小正周期为,单调递减区间为;(2)或【解题分析】

(1)由向量的数量积的运算公式和三角恒等变换的公式化简可得,再结合三角函数的性质,即可求解.(2)由(1),根据,解得,利用正弦定理,求得,再利用余弦定理列出方程,即可求解.【题目详解】(1)由题意,向量,,所以,因为,所以函数的最小正周期为,令,解得,所以函数的单调递减区间为.(2)由(1)函数的解析式为,可得,解得,又由,根据正弦定理,可得,因为,所以,所以为锐角,所以,由余弦定理可得,可得,即,解得或.【题目点拨】本题主要考查了向量的数量积的运算,三角恒等变换的应用,以及正弦定理和余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.19、(Ⅰ)证明见解析;(Ⅱ)【解题分析】试题分析:(Ⅰ)连接AC,设AC∩BD=Q,又点E是PC的中点,则在△PAC中,中位线EQ∥PA,又EQ⊂平面BDE,PA⊄平面BDE.所以PA∥平面BDE;(Ⅱ)由平面PAB⊥平面ABCD,则PO⊥平面ABCD;作FM∥PO于AB上一点M,则FM⊥平面ABCD,进一步利用求得最后利用平行线分线段成比例求出λ的值试题解析:(Ⅰ)连接AC,设AC∩BD=Q,又点E是PC的中点,则在△PAC中,中位线EQ∥PA,又EQ⊂平面BDE,PA⊄平面BDE.所以PA∥平面BDE(Ⅱ)解:依据题意可得:PA=AB=PB=2,取AB中点O,所以PO⊥AB,且又平面PAB⊥平面ABCD,则PO⊥平面ABCD;作FM∥PO于AB上一点M,则FM⊥平面ABCD,因为四边形ABCD是矩形,所以BC⊥平面PAB,则△PBC为直角三角形,所以,则直角三角形△ABD的面积为,由FM∥PO得:考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积20、(1)证明见解析(2)证明见解析【解题分析】

(1)直接利用任意角的三角函数的定义证得.(2)由已知条件利用诱导公式,证明.【题目详解】解:(1)将角的顶点置于平面直角坐标系的原点,始边与轴的正半轴重合,设角终边一点(非原点),其坐标为.∵,∴,.(2)由于,将换成后,就有即,.【题目点拨】本题主要考查任意角的三角函数的定义

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论