版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4回顾整理教学内容教材第70~72页,回顾整理教学提示圆的周长,圆的面积公式的灵活应用教学目标知识与能力通过引导学生回顾整理,加深学生对圆形的特征和周长面积公式的理解,进一步将知识系统化,形成知识网络。过程与方法让学生主动参与数学知识的整理过程,经历系统整理和复习所学数学知识的过程。情感、态度与价值观进一步经历数学知识的应用过程,提高应用所学数学知识解决简单实际问题的能力培养创新意识,在应用数学解决问题的过程中进一步体会数学的价值。重点、难点重点:学会圆的特征、会计算圆的周长、圆的面积难点:会用周长、面积公式解决实际问题。教学准备教师准备:实物投影仪。学生准备:练习本。教学过程一、新课导入师:同学们,想一想通过本单元的学习,你都学到了哪些知识?有什么收获?咱们交流一下吧!(学生自由发言,学生的回答可能有以下几种情况)生1:我认识了圆,我还知道圆的特征。生2:我知道了直径与半径的相互关系,并知道圆周率是怎样来的。生3:我学会了求圆的周长和面积。……设计意图:通过回顾,为整理梳理知识结构做铺垫。(二)探究新知:师:同学们能不能自己整理出本单元的知识网络?要不讨论一下,然后尝试整理。看看那组同学做的比较好。(1)讨论知识联系。学生分小组进行尝试构建知识网络,教师巡视指导,了解信息。(2)小组内说想法。(3)交流展示。指名到展示台前进行汇报。生:展示知识网络圆圆认识周长面积半径r(无数条)决定圆的大小直径d(无数条)d=2r圆心O—决定圆的位置轴对称图形(无数条对称轴)在同一个圆内,所以的半径都相等,所以的直径都相等名称特点定义:围成圆的曲线的长度计算公式:C=πdC=2πr推导方法:化曲为直定义:圆所围成的平面图形的大小计算公式:S=πr²推导方法:化圆为方师:同学们整理的非常好,下面我们应用我们整理的知识解决实际问题。设计意图:通过构造知识网络,使知识之间的内在联系更条理,思路更清晰,有利于学生掌握。(三)巩固新知:1、综合练习第1题(动手操作)师:同学们,既然我们对圆有了深刻的了解,那我们就先来画一个圆,要按要求来画:①画一个半径昰1.5厘米的圆。②用字母标出圆心、半径和直径。③画出一条它的对称轴。(让学生独立动手画圆,并且互相比较交流在同一个圆里所有的半径怎样?所有的直径怎样?)2、综合练习第2题。计算图形的周长和面积的基本题目。练习时,让学生独立试做,交流时注意引导学生针对第3个图形区别圆的周长的一半和半圆的周长。3.综合练习第3题。计算题,尝试让学生记住结果。4.综合练习第4题。动手操作题,先让学生自主操作,然后指出扇形各部分的名称。5.综合练习第5题。第5、6题是解决实际问题的题目,一个是求圆的面积,一个是求圆的周长。练习时,先让学生独立试做,然后集体交流。6.综合练习第7题。利用圆的知识解决自然现象中的数学问题。练习时,可以先引导学生理解题意,即水波传送的距离就是半径,水波的面积就是圆的面积;求“那种物体产生的水波面积大?大多少”,就是求环形的面积。7.综合练习第8题。求组合图形的面积的题目。一方面要注意引导学生体会图形之间的联系,另一方面要求学生能熟练地运用不同图形的面积公式进行计算。8.综合练习第9题。先让学生独立试做,然后集体交流。9.综合练习第10题。利用圆的知识,解决生活中实际问题的题目。练习时,先让学生独立试做,集体交流时,第(1)小题可以先求出小圆桌和大圆桌的周长,再求比。如果学生直接求出直径比,也应给予肯定。10.综合练习第11题。这是一道综合运用所学知识解决实际问题的题目。练习时,先让学生独立试做,然后进行交流。交流时注意让学生说清楚解决问题的思路,即要求扩建后圆形花坛的周长与面积,需要先求出扩建后花坛的直径。答案:扩建后直径为15×eq\f(4,3)=20(米),周长为3.14×20=62.8(米),面积为3.14×(20÷2)²=314(平方米)。11.综合练习第12题。实际操作并计算的题目。测量硬币直径时,教师要提醒学生注意测量的方法,测量后向学生介绍硬币的实际直径。计算后,引导学生观察计算结果,体会两个圆的半径比,周长比。直径比是相等的。12.综合练习第13题。学生独立试做,然后交流。答案:(1)大圆的周长是18.84厘米,两个小圆周长的和也是18.84厘米,发现它们的周长相等。(2)大圆的面积是28.26平方厘米,两个小圆面积之和是14.13平方厘米。大圆的面积是两个小圆面积之和的2倍。设计意图:通过练习,引导学生巩固本单元所学知识,区分圆的周长和圆的面积。熟练应用圆的知识,解决实际问题。(四)达标反馈1.填空(1)用圆规画一个直径为20厘米的圆,圆规两脚之间的距离是()厘米。(2)在一个半径为3厘米的圆内,可以画无数条线段,最长的一条是()厘米。(3)一个半圆的直径是2分米,它的周长是()分米,面积是()平方分米。(4)圆的周长是25.12分米,它的面积是()平方分米。(5)甲圆半径是乙圆半径的3倍,甲圆周长是乙圆周长的()倍,甲圆面积是乙圆面积的()倍。2.判断。对的在括号内画“√”,错的在括号内画“×”。(1)任何圆的面积总是它半径的π倍。()(2)圆的直径是半径的2倍。()(3)半径是2厘米的圆,它的周长和面积相等。()(4)如果两个圆的周长相等,那么这两个圆的面积一定相等。()3.选择正确的答案的序号填在括号内(1)在一个长5厘米,宽3厘米的长方形中画一个最大的圆,它的半径是()A、5厘米B、3厘米C、2.5厘米D、1.5厘米(2)大圆半径等于小圆直径的长度,则大圆的面积是小圆面积的()倍,大圆周长是小圆周长的()倍。A、2B、4C、6.28D、0.5(3)在一个圆内画一个最大的正方形,得到的图形有()条对称轴。A、2B、4C、8D、无数(4)用三根同样长的铁丝分别围成长方形、正方形,圆,围成的()的面积最大。A、圆B、长方形C、正方形(5)一个直径为1厘米的圆与一个边长为1厘米的正方形相比,它们的面积()。A、圆的面积大B、正方形的面积大C、一样大D、无法比较答案:1、10,6,5.14,1.57,50.24,3,9。2、×,×,×,√。3、D,B,A,B,A,A。设计意图:当堂检验学习的效果,了解学生的学习情况,为第布置作业,确定教学练习重点准备。(五)课堂小结这节课你学会了什么,有哪些收获?给大家说说。谁能把我们今天的问题再叙述一下?思路是怎样的?你理解了吗?预设:生1:我理清了圆这样单元的知识。生2:我还会解决有关圆的实际问题。生3:……设计意图:通过总结,既能够使学生加深对所学内容本质的理解和深层次思考,从而将所学知识纳入自己的认知结构,又提升了学生的梳理和概括能力。(六)布置作业第1课时:回顾整理1、填空。(1)圆的位置是由()决定的,圆的大小是由()决定的。(2)圆是()图形,它有()条对称轴,每条对称轴都通过()。(3)乙圆半径是甲圆半径的eq\f(1,3),乙圆面积与甲圆面积的比是()。(4)用一根铁丝围成一个圆,半径正好是5分米,如果把这根铁丝改围成一个正方形,它的边长是()分米。(5)把一块边长为4分米的正方形铁皮剪成一个最大的圆形,剪去部分的面积是正方形面积的()。(6)填表。图形半径(厘米)直径(厘米)周长(厘米)面积(平方厘米)圆3圆4圆9.42圆环2(内圆)8(外圆)——2、判断。对的在括号内画“√”,错的在括号内画“×”。(1)半圆只有一条对称轴。()(2)半径为5厘米的圆比直径为8厘米的圆小。()(3)半径为10分米的圆的面积是半径为5分米的圆的面积的4倍。()(4)一个周长是6.28分米的圆形纸片,沿直径剪成两个半圆,每个半圆的周长是3.14分米。()3、选择正确的答案的序号填在括号内。(1)一张长方形纸长8厘米,宽6厘米,在这张长方形纸上画一个最大的圆,这个圆的面积是()平方厘米。A、50.24B、48C、28.26(2)右面两个图中阴影部分的()A、周长相等,面积不相等。B、周长和面积都相等。C、周长不相等,面积相等。D、周长和面积都不相等。答案:1、圆心,半径,轴对称,无数,1:9,7.85,eq\f(π,4),6,18.84,28.26,2,12.56,12.56,1.5,3,7.065,37.68。2、√,×,√,×。3、C,C。板书设计回顾整理圆圆认识周长面积半径r(无数条)决定圆的大小直径d(无数条)d=2r圆心O—决定圆的位置轴对称图形(无数条对称轴)在同一个圆内,所以的半径都相等,所以的直径都相等名称特点定义:围成圆的曲线的长度计算公式:C=πdC=2πr推导方法:化曲为直定义:圆所围成的平面图形的大小计算公式:S=πr²推导方法:化圆为方教学反思本节课是对第四单元知识内容的回顾和整理,在设计本节课的教学活动时,想体现以下几个方面:1、努力营造宽松、民主和谐的学习氛围,引导学生积极参与学习过程。整个教学过程设计是在探究中构建,在应用中发展。2、注重建构,形成网络。复习课不应是对知识的简单重复,而应使学生形成知识网络、数学技能。课堂教学中应引导学生学会自主学习,学会构建知识体系。本节课教师先引导学生将学过的圆形知识进行梳理,重点加强对相关图形的区别和联系的认识,然后通过交流合作进一步将知识系统化,形成知识网络。教学中注重学习方法的渗透,让学生学得有法。重视整理方法和解决问题策略的比较和提升。3、注重培养学生解决实际问题的能力本节课设计的练习内容,充分调动学生参与的积极性,练习内容体现层次性、针对性。其中让学生计算光盘的面积、回音壁的周长,水波面积的大小等题目的练习设计,充分体现了数学“从生活中来,到生活中去”的理念,从而培养了学生分析问题和解决实际问题的能力。教学资料包教学资源:一、填空。1.在同一个圆里,有()条直径,直径的长度是半径的()。2.正方形有()条对称轴,等边三角形有()条对称轴,圆有()条对称轴。3.用圆规画一个周长是31.4厘米的圆,那么圆规两脚之间的距离是()厘米。4.在一张长6分米、宽4分米的硬纸板上,最多能剪下()个半径是1分米的圆。5.3.1、eq\f(22,7)、3.、3.14和π按照从小到大的顺序排列是()。6.在边长8厘米的正方形中画一个最大的圆,这个圆的半径是()厘米,周长是()厘米。7.两个圆的直径比是1:3,周长的比是(),面积的比是()。8.将一个圆平均分成若干个完全相同的小扇形,剪拼成近似的长方形,长方形的周长比原来圆的周长长8厘米,这个长方形的面积是()。9.用一根铜丝正好在一个直径是10厘米的圆管上绕上10圈,这根铜丝约长()厘米。10.一个圆的周长是25.12厘米,它的面积是()。二、判断。1.在同一个圆内,两条半径就是一条直径。()2.车轮滚动一周,所行驶的路程等于车轮的周长。()3.大小不同的圆,它们周长和直径的比值不相等。()4.两个半圆一定可以拼成一个整圆。()5.半圆的周长就是圆周长的一半。()三、选择。1.小明有一张圆形卡片,要想找到它的圆心,小明只要将卡片对折()次就可以找到。A.1B.2C.3D.42.下列图形中,周长相等时,()的面积最大。A.长方形B.正方形C.平行四边形D.圆3.一个挂钟,时针长5厘米,分针长6厘米,分针走一圈比时针走一圈扫过的面积多多少平方厘米?正确列式是()。A.3.14×5²B.3.14×(6-5)²C.3.14×6²D.3.14×(6²-5²)4.将一个半径是3厘米的圆分成两个半圆,每个半圆的周长是()。A.3.14×3B.3.14×3×2C.3.14×3+3D.3.14×3+3×25.一个圆的半径由1分米增加到2分米,它的周长增加()分米。A.2B.3.14C.6.28D.12.56四、作图王叔叔家有一个边长为1米的正方形玻璃,角的位置有一处破损(如图),扔掉有些可惜,同时也不利于环境保护,于是他想把它切割成一个面积最大的正方形桌面。应该怎样切割?请你画一画,并求出这个桌面的面积。五、按要求计算。1.求下图阴影部分的周长。2.大圆的半径4厘米,小圆的半径2厘米,求下图阴影部分的面积。六、解决问题1.一个半圆形水池,它的周长是20.56米,水池的直径长多少米?2.一个圆形养鱼池,直径是4米,这个养鱼池的周长是多少米?占地面积是多少平方米?3.公园里有一个圆形花坛,直径是18米,在它的周围建一条1米宽的环形石子路。(1)这条石子路的面积是多少平方米?(2)沿环形石子路的外边缘每隔0.4米装一盏地灯,一共要安装多少盏地灯?4.一个圆形养鱼池直径是20米,如果平均每平方米水面投放鱼苗15尾,那么这个养鱼池一共要投放鱼苗多少尾?5.一个圆形花坛的半径是8米。其中花坛的eq\f(1,4)种了月季。种月季的面积是多少平方米?6.小丽把一个圆形纸片平均分成若干个小扇形,然后拼成近似的长方形,量出长方形的长是15.7厘米,这个圆的面积是多少平方厘米?7、用钢丝将两根同样粗的钢管捆3圈,钢管的外直径是50厘米,下图所示的是其横截面示意图。如果钢丝的接头部分长40厘米,这根钢丝有多少米?8、求右图阴影部分面积(单位:厘米)答案:一、1.无数,2倍;2.4,3,无数;3.5;4.6;5.4,25.12;6.1:3,1:9;7.50.24厘米²;8.314;9.50.24厘米²二、×√×××;三、BDDDC;四、(略)五、1.71.4厘米,2.37.68平方厘米;六、1.8米;2.12.56米,12.56平方米;3.59.66平方米,157盏;4.4710尾;5.50.24平方米;6.78.5平方厘米;7、2.97米;8、15.44平方厘米。资料链接圆与球:跨时代、跨文化的数学故事伫立在北京天坛祈年殿前,赞美之情油然而生。这座完美的古代建筑,最基本的设计元素竟然是最简单的几何图形—圆。三层汉白玉圆形台基、三层蓝琉璃圆顶大殿,与附近的圆形皇穹宇和圜丘交相辉映,好一片圆美世界!圆和球还是最实用的图形。宏大如宇宙天体,微小至原子电子,飞转的车轮,滴嗒的钟表……人们的日常生活离不开圆和球,科技的进步也离不开圆和球。简单中寓深奥。在圆与球简约的外形下,潜藏着无穷的数学奥秘。圆周长和圆面积的计算,蕴涵着极限思想。中国古代数学家刘徽创立的“割圆术”,就是用圆内接正多边形去逐步逼近圆。刘徽从圆内接正六边形出发,将边数逐次加倍,并计算逐次得到的正多边形的周长和面积(以及相应的圆周率近似值)。纪念割圆术的邮票古希腊数学家称用多边形逼近曲线图形的方法为“穷竭法”,早在公元前3世纪,阿基米德也是用这种方法去计算圆的周长、面积及圆周率的。不过阿基米德最引以自豪的,是他对球体积的计算。阿基米德考虑一个球和它的外切圆柱,以及一个辅助的圆锥,其基本做法是将这些立体分割成无数的薄片,并用力学平衡的方法比较它们的体积,最后求得球体积的正确公式:(R是球半径)。阿基米德的方法可以看成是积分学的先声。无独有偶,在东方,中国南北朝时期的数学家祖冲之和他的儿子,也是利用球和它的外切圆柱计算出正确的球体积公式。不过与阿基米德不同,祖氏父子考虑的是同一个球的两个互相垂直的外切圆柱的公共部分(刘徽最先发现该种立体并命名为“牟合方盖”),并运用欧洲学者迟至17世纪才重新发现的不可分量原理推算出这部分立体与其所含内切球的体积之比。祖氏父子的方法与阿基米德的可以说是异曲同工,殊途同归。至于近代微积分的发明,圆和球也扮演了重要的角色。我们知道,在17世纪上半纪微积分酝酿时期,圆面积与圆周率π的计算,曾是那些寻找打开无穷小算法大门钥匙的数学大师们关注的热点。牛顿之前的先行者、英国数学家沃利斯在其代表作《无穷算术》中,用插值法计算1/4圆的面积,并进而导出了无穷乘积表达式。沃利斯牛顿推广沃利斯的方法而得到了指数可以是分数和负数的二项定理,二项定理在建立微积分算法中的作用是众所周知的。在解析几何的发明人笛卡儿手中,圆是他作图求解方程的基本工具。笛卡儿在《几何学》一书中提出的求曲线切线的方法甚至以“圆法”著称,而牛顿正是从研究、改善笛卡儿“圆法”开始踏上制定微积分的漫漫征途。微积分的另一位发明人莱伯尼茨也计算过圆面积及圆周率,他给出了π的无穷级数表达式。笛卡尔纪念邮票饶有意味的是,与牛顿、莱布尼茨差不多同时代的日本“
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 15561-2024数字指示轨道衡
- 农业副产品高值化利用趋势
- 高一化学教案:专题第二单元第一课时化学反应中的热量变化(一)
- 2024高中化学第四章生命中的基础有机化学物质1油脂课时作业含解析新人教版选修5
- 2024高中地理课时作业8区域工业化与城市化-以我国珠江三角洲地区为例含解析新人教版必修3
- 2024高中语文第1单元论语蚜第1课天下有道丘不与易也练习含解析新人教版选修先秦诸子蚜
- 2024高中语文第五单元散而不乱气脉中贯文与可筼筜谷偃竹记训练含解析新人教版选修中国古代诗歌散文欣赏
- 2024高中语文精读课文一第2课3鲁迅:深刻与伟大的另一面是平和三课堂练习含解析新人教版选修中外传记蚜
- 2024高考地理一轮复习第七单元自然环境对人类活动的影响练习含解析
- 2025新人教版英语七年级下不规则动词表
- 美的洗衣机MG60-N1003E使用说明书
- 人教版六年级语文上册期末考试卷(完整版)
- 2023-2024学年第一学期期末质量检测九年级物理试题(带答案)
- 建筑幕墙物理性能分级
- 河南省2024年道法中考热点备考重难专题:发展航天事业建设航天强国(课件)
- 临床诊疗规范与操作指南制度
- DLT 5285-2018 输变电工程架空导线(800mm以下)及地线液压压接工艺规程
- 新员工入职培训测试题附有答案
- 劳动合同续签意见单
- 大学生国家安全教育意义
- 2024年保育员(初级)培训计划和教学大纲-(目录版)
评论
0/150
提交评论