![同位角、内错角、同旁内角教案_第1页](http://file4.renrendoc.com/view10/M00/17/17/wKhkGWWmqbGANdw-AAGBA2N2sWo936.jpg)
![同位角、内错角、同旁内角教案_第2页](http://file4.renrendoc.com/view10/M00/17/17/wKhkGWWmqbGANdw-AAGBA2N2sWo9362.jpg)
![同位角、内错角、同旁内角教案_第3页](http://file4.renrendoc.com/view10/M00/17/17/wKhkGWWmqbGANdw-AAGBA2N2sWo9363.jpg)
![同位角、内错角、同旁内角教案_第4页](http://file4.renrendoc.com/view10/M00/17/17/wKhkGWWmqbGANdw-AAGBA2N2sWo9364.jpg)
![同位角、内错角、同旁内角教案_第5页](http://file4.renrendoc.com/view10/M00/17/17/wKhkGWWmqbGANdw-AAGBA2N2sWo9365.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
同位角、内错角、同旁内角教案学习目标
1、理解三线八角中没有公共顶点的角的位置关系,知道什么是同位角、内错角、同旁内角、毛
2、通过比拟、观看、把握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角、
重点难点
同位角、内错角、同旁内角的特征
教学过程
一、导入
1、指出右图中全部的邻补角和对顶角?
2、图中的∠1与∠5,∠3与∠5,∠3与∠6是邻补角或对顶角吗?
若都不是,请自学课本P6内容后答复它们各是什么关系的角?
二、问题导学
1、如图⑴,将木条,与木条c钉在一起,若把它们看成三条直线则该图可说成“直线和直线与直线相交“也可以说成“两条直线,被第三条直线所截“、构成了小于平角的角共有个,通常将这种图形称作为“三线八角“。其中直线,称为两被截线,直线称为截线。
2、如图⑶是“直线,被直线所截“形成的图形
(1)∠1与∠5这对角在两被截线AB,CD的,在截线EF的,形如““字型、具有这种关系的一对角叫同位角。
(2)∠3与∠5这对角在两被截线AB,CD的,在截线EF的,形如““字型、具有这种关系的一对角叫内错角。
(3)∠3与∠6这对角在两被截线AB,CD的,在截线EF的,形如““字型、具有这种关系的一对角叫同旁内角。
3、找出图⑶中全部的同位角、内错角、同旁内角
4、争论与沟通:
(1)“同位角、内错角、同旁内角“与“邻补角、对顶角“在识别方法上有什么区分?
(2)归纳总结同位角、内错角、同旁内角的特征:
同位角:“F“字型,“同旁同侧“
“三线八角“内错角:“Z“字型,“之间两侧“
同旁内角:“U“字型,“之间同侧“
三、典题训练
例1、如图⑵中∠1与∠2,∠3与∠4,∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?
小结将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;
两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;
自我检测
⒈如图⑷,以下说法不正确的选项是()
A、∠1与∠2是同位角B、∠2与∠3是同位角
C、∠1与∠3是同位角D、∠1与∠4不是同位角
⒉如图⑸,直线AB、CD被直线EF所截,∠A和是同位角,∠A和是内错角,∠A和是同旁内角、
⒊如图⑹,直线DE截AB,AC,构成八个角:
①指出图中全部的同位角、内错角、同旁内角、
②∠A与∠5,∠A与∠6,∠A与∠8,分别是哪一条直线截哪两条直线而成的什么角?
⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D、
①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角、
②试说明∠1=∠2=∠3的理由、(提示:三角形内角和是1800)
相交线与平行线练习
课型:复习课:备课人:徐新齐审核人:霍红超
一.根底学问填空
1、如图,∵AB⊥CD(已知)
∴∠BOC=90°()
2、如图,∵∠AOC=90°(已知)
∴AB⊥CD()
3、∵a∥b,a∥c(已知)
∴b∥c()
4、∵a⊥b,a⊥c(已知)
∴b∥c()
5、如图,∵∠D=∠DCF(已知)
∴_____//______()
6、如图,∵∠D+∠BAD=180°(已知)
∴_____//______()
(第1、2题)(第5、6题)(第7题)(第9题)
7、如图,∵∠2=∠3()
∠1=∠2(已知)
∴∠1=∠3()
∴CD____EF()
8、∵∠1+∠2=180°,∠2+∠3=180°(已知)
∴∠1=∠3()
9、∵a//b(已知)
∴∠1=∠2()
∠2=∠3()
∠2+∠4=180°()
10、如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2、试说明∠BDG+∠B=180°、
二.根底过关题:
1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE。
证明:∵∠A=∠F(已知)
∴AC∥DF()
∴∠D=∠()
又∵∠C=∠D(已知),
∴∠1=∠C(等量代换)<
教案网免费发布初中初一下册数学教案:同位角、内错角、同旁内角,更多初中初一下册数学教案相关信息请访问教案网。
∴BD∥CE()。
2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B+∠F=180°。
证明:∵∠B=∠BGD(已知)
∴AB∥CD()
∵∠DGF=∠F;(已知)
∴CD∥EF()
∵AB∥EF()
∴∠B+∠F=180°()。
3、如图,已知AB∥CD,EF交AB,CD于G、H,GM、HN分别平分∠AGF,∠EHD,试说明GM∥HN、
同位角、内错角、同旁内角教案2
教学目标:
1、理解同位角、内错角、同旁内角的概念;
2、会识别同位角、内错角、同旁内角。
重点:同位角、内错角、同旁内角的'概念与识别;
难点:识别同位角、内错角、同旁内角。
教学过程
一、导入新课
前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线分别与两条直线相交的情形。
二、同位角、内错角、同旁内角
如图,直线a、b与直线c相交,或者说,两条直线a、b被第三条直线c所截,得到八个角。
我们来研究那些没有公共顶点的两个角的关系。
∠1与∠2、∠4与∠8、∠5与∠6、∠3与∠7有什么位置关系?
在截线的同旁,被截直线的同方向(同上或同下)。
具有这种位置关系的两个角叫做同位角。
同位角形如字母“F”。
∠3与∠2、∠4与∠6的位置有什么共同的特点?
在截线的两旁,被截直线之间。
具有这种位置关系的两个角叫做内错角。
内错角形如字母“Z”。
∠3与∠6、∠4与∠2的位置有什么共同的特点?
在截线的同旁,被截直线之间。
具有这种位置关系的两个角叫做同旁内角。
同旁内角形如字母“U”。
思考:这三类角有什么相同的地方?
(1)都不相邻即不存在共公顶点;
(2)有一边在同一条直线(截线)上。
三、例题
例如图,直线DE,BC被直线AB所截,
(1)∠1与∠2、∠1与∠3、∠1与∠4各是什么角?为什么?
(2)如果∠1=∠4,那么∠1与∠2相等吗?∠1与∠3互补吗?为什么?
解:
(1)∠1与∠2是内错角,因为∠1与∠2在直线DE,BC之间,在截线AB的两旁;∠1与∠3是同旁内角,因为∠1与∠3在直线DE,BC之间,在截线AB的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版新型实木地板安装与维护一体化合同
- 2025年在线教育平台课程销售佣金及教学资源合作合同
- 2025年度综合性幼儿园运营管理承包合同
- 2025年激光测距仪、测向仪合作协议书
- 2025年钢铁厂钢筋施工劳务承包合同:成本控制
- 业务部门财务支持计划
- 幼儿园小班的校园文化建设工作计划
- 玩中学学中玩计划
- 细化货物标识与管理的措施计划
- 游戏行业推出创新游戏玩法计划
- 【湘教版】2024-2025学年七年级数学下册教学工作计划(及进度表)
- 2024预防流感课件完整版
- 2024年安徽省高校分类考试对口招生语文试卷真题(含答案)
- 新概念英语第2册课文(完整版)
- GB∕T 19924-2021 流动式起重机 稳定性的确定
- 员工入职登记表
- 黑龙江普通专升本考试基础英语试卷(补考)
- 中国青年气候意识与行为调研报告2020
- 房产部经纪人岗前培训——税费计算ppt课件
- 室外道路及管网工程施工招标文件(DOC43页)
- 《物理化学》电子教案(上册)(共84页)
评论
0/150
提交评论