2024届四川巫溪县白马中学数学高一下期末学业质量监测模拟试题含解析_第1页
2024届四川巫溪县白马中学数学高一下期末学业质量监测模拟试题含解析_第2页
2024届四川巫溪县白马中学数学高一下期末学业质量监测模拟试题含解析_第3页
2024届四川巫溪县白马中学数学高一下期末学业质量监测模拟试题含解析_第4页
2024届四川巫溪县白马中学数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川巫溪县白马中学数学高一下期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,是平面内一组基底,若,,,则以下不正确的是()A. B. C. D.2.已知向量,,且与的夹角为,则()A. B.2 C. D.143.已知是等差数列,,其前10项和,则其公差A. B. C. D.4.已知,且,,这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则()A.7 B.6 C.5 D.95.函数图象向右平移个单位长度,所得图象关于原点对称,则在上的单调递增区间为()A. B. C. D.6.已知点和点,且,则实数的值是()A.或 B.或 C.或 D.或7.等差数列中,若,则=()A.11 B.7 C.3 D.28.在四边形中,若,且,则四边形是()A.矩形 B.菱形 C.正方形 D.梯形9.已知集合,,则()A. B. C. D.10.数列{an}满足a1=1,an+1=2an+1(n∈N+),那么a4的值为().A.4 B.8 C.15 D.31二、填空题:本大题共6小题,每小题5分,共30分。11.若点,是圆C:上不同的两点,且,则的值为______.12.已知直线y=b(0<b<1)与函数f(x)=sinωx(ω>0)在y轴右侧依次的三个交点的横坐标为x1=,x2=,x3=,则ω的值为______13.已知角满足且,则角是第________象限的角.14.已知数列满足:,则___________.15.若直线的倾斜角为,则______.16.对于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,则x的取值范围是________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆的方程为,直线l的方程为,点P在直线l上,过点P作圆的切线PA,PB,切点为A,B.(1)若,求点P的坐标;(2)求证:经过A,P,三点的圆必经过异于的某个定点,并求该定点的坐标.18.已知,,且(1)求的定义域.(2)判断的奇偶性,并说明理由.19.已知函数,且.(1)求常数及的最大值;(2)当时,求的单调递增区间.20.如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为“阿当数列”.(1)若数列为“阿当数列”,且,,,求实数的取值范围;(2)是否存在首项为1的等差数列为“阿当数列”,且其前项和满足?若存在,请求出的通项公式;若不存在,请说明理由.(3)已知等比数列的每一项均为正整数,且为“阿当数列”,,,当数列不是“阿当数列”时,试判断数列是否为“阿当数列”,并说明理由.21.交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为,其范围为,分别有五个级别:,畅通;,基本畅通;,轻度拥堵;,中度拥堵;,严重拥堵.在晚高峰时段(),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

由已知及平面向量基本定理可得:,问题得解.【题目详解】因为,是平面内一组基底,且,由平面向量基本定理可得:,所以,所以D不正确故选D【题目点拨】本题主要考查了平面向量基本定理的应用,还考查了同角三角函数的基本关系,属于较易题.2、A【解题分析】

首先求出、,再根据计算可得;【题目详解】解:,,又,且与的夹角为,所以.故选:A【题目点拨】本题考查平面向量的数量积以及运算律,属于基础题.3、D【解题分析】,解得,则,故选D.4、C【解题分析】

由,可得成等比数列,即有=4;讨论成等差数列或成等差数列,运用中项的性质,解方程可得,即可得到所求和.【题目详解】由,可得成等比数列,即有=4,①若成等差数列,可得,②由①②可得,1;若成等差数列,可得,③由①③可得,1.综上可得1.故选:C.【题目点拨】本题考查等差数列和等比数列的中项的性质,考查运算能力,属于中档题.5、A【解题分析】

根据三角函数的图象平移关系结合函数关于原点对称的性质求出的值,结合函数的单调性进行求解即可.【题目详解】函数图象向右平移个单位长度,得到,所得图象关于原点对称,则,得,,∵,∴当时,,则,由,,得,,即函数的单调递增区间为,,∵,∴当时,,即,即在上的单调递增区间为,故选:A.【题目点拨】本题主要考查三角函数的图象和性质,求出函数的解析式结合三角函数的单调性是解决本题的关键.6、A【解题分析】

直接利用两点间距离公式得到答案.【题目详解】已知点和点故答案选A【题目点拨】本题考查了两点间距离公式,意在考查学生的计算能力.7、A【解题分析】

根据和已知条件即可得到.【题目详解】等差数列中,故选A.【题目点拨】本题考查了等差数列的基本性质,属于基础题.8、A【解题分析】

根据向量相等可知四边形为平行四边形;由数量积为零可知,从而得到四边形为矩形.【题目详解】,可知且四边形为平行四边形由可知:四边形为矩形本题正确选项:【题目点拨】本题考查相等向量、垂直关系的向量表示,属于基础题.9、A【解题分析】

先分别求出集合,,由此能求出.【题目详解】集合,,1,,或,,,.故选:.【题目点拨】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.10、C【解题分析】试题分析:,,,故选C.考点:数列的递推公式二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由,再结合坐标运算即可得解.【题目详解】解:因为点,是圆C:上不同的两点,则,,又所以,即,故答案为:.【题目点拨】本题考查了向量模的运算,重点考查了运算能力,属基础题.12、1【解题分析】

由题得函数的周期为解之即得解.【题目详解】由题得函数的周期为.故答案为1【题目点拨】本题主要考查三角函数的图像和性质,考查三角函数的周期,意在考查学生对这些知识的理解掌握水平和分析推理能力.13、三【解题分析】

根据三角函数在各个象限的符号,确定所在象限.【题目详解】由于,所以为第三、第四象限角;由于,所以为第二、第三象限角.故为第三象限角.故答案为:三【题目点拨】本小题主要考查三角函数在各个象限的符号,属于基础题.14、0【解题分析】

先由条件得,然后【题目详解】因为所以因为,且所以,即故答案为:0【题目点拨】本题考查的是数列的基础知识,较简单.15、【解题分析】

首先利用直线方程求出直线斜率,通过斜率求出倾斜角.【题目详解】由题知直线方程为,所以直线的斜率,又因为倾斜角,所以倾斜角.故答案为:.【题目点拨】本题主要考查了直线倾斜角与直线斜率的关系,属于基础题.16、(-∞,-1)∪(3,+∞)【解题分析】不等式可化为m(x-1)+x2-4x+3>0在0≤m≤4时恒成立.令f(m)=m(x-1)+x2-4x+3.则⇒⇒即x<-1或x>3.故答案为(-∞,-1)∪(3,+∞)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)和;(2)和【解题分析】

(1)设,连接,分析易得,即有,解得的值,即可得到答案.(2)根据题意,分析可得:过A,P,三点的圆为以为直径的圆,设的坐标为,用表示过A,P,三点的圆为,结合直线与圆的位置关系,分析可得答案.【题目详解】(1)根据题意,点P在直线l上,设,连接,因为圆的方程为,所以圆心,半径,因为过点P作圆的切线PA,PB,切点为A,B;则有,且,易得,又由,即,则,即有,解得或,即的坐标为和.(2)根据题意,是圆的切线,则,则过A,P,三点的圆为以为直径的圆,设的坐标为,,则以为直径的圆为,变形可得:,即,则有,解得或,则当和,时,恒成立,则经过A,P,三点的圆必经过异于的某个定点,且定点的坐标和.【题目点拨】本题考查了直线与圆的位置关系、圆中的定点问题,考查学生分析问题、解决问题的能力,属于中档题.18、(1);(2)偶函数,理由见解析.【解题分析】

(1)根据对数的真数大于零可求得和的定义域,取交集可得定义域;(2)整理可得,验证得,得到函数为偶函数.【题目详解】(1)令得:定义域为令得:定义域为的定义域为(2)由题意得:,为定义在上的偶函数【题目点拨】本题考查函数定义域的求解、奇偶性的判断;求解函数定义域的关键是明确对数函数要求真数必须大于零,且需保证构成函数的每个部分都有意义.19、(1),(2)递增区间为.【解题分析】

(1)由二倍角公式降幂,再由求出,然后由两角和的余弦公式化函数为一个角的一个三角函数形式,结合余弦函数单调性可得最大值;(2)由(1)结合余弦函数性质可得增区间.【题目详解】(1),由得,,即.∴,当时,即时,.(2)由,得,又,所以,所以递增区间为.【题目点拨】本题考查二倍角公式,考查两角和的余弦公式,考查余弦函数的性质.三角函数问题一般都要由三角恒等变换化为一个角的一个三角函数形式,然后利用正弦函数或余弦函数性质求解.20、(1);(2)不存在,理由见详解;(3)见详解.【解题分析】

(1)根据题意,得到,求解即可得出结果;(2)先假设存在等差数列为“阿当数列”,设公差为,则,根据等差数列求和公式,结合题中条件,得到,即对任意都成立,判断出,推出矛盾,即可得出结果;(3)设等比数列的公比为,根据为“阿当数列”,推出在数列中,为最小项;在数列中,为最小项;得到,,再由数列每一项均为正整数,得到,或,;分别讨论,和,两种情况,结合数列的增减性,即可得出结果.【题目详解】(1)由题意可得:,,即,解得或;所以实数的取值范围是;(2)假设存在等差数列为“阿当数列”,设公差为,则,由可得:,又,所以对任意都成立,即对任意都成立,因为,且,所以,与矛盾,因此,不存在等差数列为“阿当数列”;(3)设等比数列的公比为,则,且每一项均为正整数,因为为“阿当数列”,所以,所以,;因为,即在数列中,为最小项;同理,在数列中,为最小项;由为“阿当数列”,只需,即,又因为数列不是“阿当数列”,所以,即,由数列每一项均为正整数,可得:,所以,或,;当,时,,则,令,则,所以,即数列为递增数列,所以,因为,所以对任意,都有,即数列是“阿当数列”;当,时,,则,显然数列是递减数列,,故数列不是“阿当数列”;综上,当时,数列是“阿当数列”;当时,数列不是“阿当数列”.【题目点拨】本题主要考查数列的综合,熟记等差数列与等比数列的通项公式与求和公式,以及数列的性质即可,属于常考题型.21、(1)轻度拥堵、中度拥堵、严重拥堵的路段的个数分别为6,9,3;(2)从交通指数在[4,6),[6,8),[8,10]的路段中分别抽取的个数为2,3,1;(3)【解题分析】

(1)根据在频率分布直方图中,小长方形的面积表示各组的频率,可以求出频率,再根据频数等于频率乘以样本容量,求出频数;(2)根据(1)求出拥堵路段的个数,求出每层之间的占有比例,然后求出每层的个数;(3)先求出从(2)中抽取的6个路段中任取2个,有多少种可能情况,然后求出至少有1个路段为轻度拥堵有多少种可能情况,根据古典概型概率公式求出.【题目详解】(1)由频率分布直方图得,这20个交通路段中,轻度拥堵的路段有(0.1+0.2)×1×20=6(个),中度拥堵的路段有(0.25+0.2)×1×20=9(个),严重拥堵的路段有(0.1+0.05)×1×20=3(个).(2)由(1)知,拥堵路段共有6+9+3=18(个),按分层抽样,从18个路段抽取6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论