




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省炎德英才大联考2024届数学高一下期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个圆柱的底面直径与高都等于球的直径,设圆柱的侧面积为,球的表面积为,则()A. B. C. D.12.同时具有性质:①图象的相邻两条对称轴间的距离是;②在上是增函数的一个函数为()A. B. C. D.3.在平行四边形ABCD中,,,E是CD的中点,则()A.2 B.-3 C.4 D.64.的内角的对边分别为,面积为,若,则外接圆的半径为()A. B. C. D.5.设α,β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.等差数列{an}的前n项之和为Sn,若A.45 B.54C.63 D.277.若平面和直线,满足,,则与的位置关系一定是()A.相交 B.平行 C.异面 D.相交或异面8.已知向量,且,则()A.2 B. C. D.9.集合,,则()A. B.C. D.10.己知,,若轴上方的点满足对任意,恒有成立,则点纵坐标的最小值为()A. B. C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.设为等差数列的前n项和,,则________.12.已知等差数列中,,,则该等差数列的公差的值是______.13.方程的解为______.14.由于坚持经济改革,我国国民经济继续保持了较稳定的增长.某厂2019年的产值是100万元,计划每年产值都比上一年增加,从2019年到2022年的总产值为______万元(精确到万元).15.已知,,则______,______.16.已知为所在平面内一点,且,则_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在直角梯形中,,,,,记,.(1)用,表示和;(2)求的值.18.设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.19.已知向量,,.(1)若,求的值;(2)设,若恒成立,求的取值范围.20.在平面直角坐标系中,O是坐标原点,向量若C是AB所在直线上一点,且,求C的坐标.若,当,求的值.21.已知关于的不等式.(1)当时,求不等式的解集;(2)当且m≠1时,求不等式的解集.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
由圆柱的侧面积及球的表面积公式求解即可.【题目详解】解:设圆柱的底面半径为,则,则圆柱的侧面积为,球的表面积为,则,故选:D.【题目点拨】本题考查了圆柱的侧面积的求法,重点考查了球的表面积公式,属基础题.2、C【解题分析】由①得函数的最小正周期是,排除.对于B:,当时,,此时B选项对应函数是减函数,C选项对应函数是增函数,满足②,故选C.3、A【解题分析】
由平面向量的线性运算可得,再结合向量的数量积运算即可得解.【题目详解】解:由,,所以,,,则,故选:A.【题目点拨】本题考查了平面向量的线性运算,重点考查了向量的数量积运算,属中档题.4、A【解题分析】
出现面积,可转化为观察,和余弦定理很相似,但是有差别,差别就是条件是形式,而余弦定理中是形式,但是我们可以注意到:,所以可以完成本题.【题目详解】由,所以在三角形中,再由正弦定理所以答案选择A.【题目点拨】本题很灵活,在常数4的处理问题上有点巧妙,然后再借助余弦定理及正弦定理,难度较大.5、A【解题分析】试题分析:当满足l⊂α,l⊥β时可得到α⊥β成立,反之,当l⊂α,α⊥β时,l与β可能相交,可能平行,因此前者是后者的充分不必要条件考点:充分条件与必要条件点评:命题:若p则q是真命题,则p是q的充分条件,q是p的必要条件6、B【解题分析】
由等差数列的性质,可知a1【题目详解】由等差数列的性质,可知a1又由等差数列的前n项和公式,可得S9【题目点拨】本题主要考查了等差数列的性质,以及前n项和公式的应用,其中解答中熟记等差数列的性质,以及利用等差数列的求和公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.7、D【解题分析】
当时与相交,当时与异面.【题目详解】当时与相交,当时与异面.故答案为D【题目点拨】本题考查了直线的位置关系,属于基础题型.8、B【解题分析】
根据向量平行得到,再利用和差公式计算得到答案.【题目详解】向量,且,则..故选:.【题目点拨】本题考查了向量平行求参数,和差公式,意在考查学生的综合应用能力.9、B【解题分析】
求出中不等式的解集确定出,找出与的交集即可.【题目详解】解:由中不等式变形得:,解得:,即,,,故选:.【题目点拨】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.10、D【解题分析】
由题意首先利用平面向量的坐标运算法则确定纵坐标的解析式,然后结合二次函数的性质确定点P纵坐标的最小值即可.【题目详解】设,则,,故,恒成立,即恒成立,据此可得:,故,当且仅当时等号成立.据此可得的最小值为,则的最小值为.即点纵坐标的最小值为2.故选D.【题目点拨】本题主要考查平面向量的坐标运算,二次函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、54.【解题分析】
设首项为,公差为,利用等差数列的前n项和公式列出方程组,解方程求解即可.【题目详解】设首项为,公差为,由题意,可得解得所以.【题目点拨】本题主要考查了等差数列的前n项和公式,解方程的思想,属于中档题.12、【解题分析】
根据等差数列的通项公式即可求解【题目详解】故答案为:【题目点拨】本题考查等差通项基本量的求解,属于基础题13、或【解题分析】
由指数函数的性质得,由此能求出结果.【题目详解】方程,,或,解得或.故答案为或.【题目点拨】本题考查指数方程的解的求法,是基础题,解题时要认真审题,注意指数函数的性质的合理运用.14、464【解题分析】
根据等比数列求和公式求解【题目详解】由题意得从2019年到2022年各年产值构成以100为首项,1.1为公比的等比数列,其和为【题目点拨】本题考查等比数列应用以及等比数列求和公式,考查基本分析求解能力,属基础题15、【解题分析】
由的值,可求出的值,再判断角的范围,可判断出,进而将平方,可求出答案.【题目详解】由题意,,因为,所以,即;又因为,所以,即,而,由于,可知,所以,则,即.故答案为:;.【题目点拨】本题考查同角三角函数基本关系的应用,考查二倍角公式的应用,考查学生的计算求解能力,属于中档题.16、【解题分析】
将向量进行等量代换,然后做出对应图形,利用平面向量基本定理进行表示即可.【题目详解】解:设,则根据题意可得,,如图所示,作,垂足分别为,则又,,故答案为.【题目点拨】本题考查了平面向量基本定理及其意义,两个向量的加减法及其几何意义,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)1【解题分析】
(1)根据向量的线性运算可直接求解得到结果;(2)将所求数量积转化为,根据数量积运算性质求得结果.【题目详解】(1),(2)由(1)得:【题目点拨】本题考查利用基底表示向量、平面向量数量积的求解问题;关键是能够熟练掌握平面向量的线性运算和数量积运算的性质.18、(1);(2)见解析.【解题分析】
试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证,先设P(m,n),则需证,即根据条件可得,而,代入即得.试题解析:解:(1)设P(x,y),M(),则N(),由得.因为M()在C上,所以.因此点P的轨迹为.由题意知F(-1,0),设Q(-3,t),P(m,n),则,.由得-3m-+tn-=1,又由(1)知,故3+3m-tn=0.所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.19、(1);(2).【解题分析】
(1)由,转化为,利用弦化切的思想得出的值,从而求出的值;(2)由,转化为,然后利用平面向量数量积的坐标运算律和辅助角公式与函数的解析式进行化简,并求出在区间的最大值,即可得出实数的取值范围.【题目详解】(1)∵,且,,,∴,即,又∵,∴;(2)易知,,∵,∴,,当时,,取得最大值:,又恒成立,即,故.【题目点拨】本题考查平面向量数量积的坐标运算,考查三角函数的最值,在求解含参函数的不等式恒成立问题,可以利用参变量分离法,转化为函数的最值来求解,考查转化与化归数学思想,考查计算能力,属于中等题.20、(1);(2)或1【解题分析】
由向量共线的坐标运算得:设,可得,又因为,,即.由题意结合向量加减法与数量积的运算化简得,所以,运算可得解.【题目详解】,因为C是AB所在直线上一点,设,可得,又因为,所以,解得,所以,故答案为且,显然,所以,,又所以,即,所以,所以即,解得:或,故答案为或1.【题目点拨】本题考查了向量共线的坐标运算及平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届上海市嘉定、长宁、金山区高三(最后冲刺)化学试卷含解析
- 2025年刮泥机项目合作计划书
- 辽宁省普通高中2025年高三第四次模拟考试化学试卷含解析
- 如何制定个人年度阅读计划
- 河南省花洲实验高级中学2025届高三下第一次测试化学试题含解析
- 2025年节能服务项目发展计划
- 2025年客运汽车站服务合作协议书
- 陕西财经职业技术学院《人工智能导论》2023-2024学年第一学期期末试卷
- 随州职业技术学院《学校乐队编排与指挥I》2023-2024学年第一学期期末试卷
- 集宁师范学院《中外文化交流(Ⅰ)》2023-2024学年第二学期期末试卷
- 病历书写基本规范测试题(题库 )附答案
- 品质提升计划改善报告课件
- 第五课《山谷回声真好听》第二课时(教案)湘艺版音乐一年级下册
- 财务报告编制总结
- 初中九年级化学酸碱盐练习题
- 员工反腐败与合规培训制度
- 中国绝经管理与绝经激素治疗指南(2023版)解读
- 《跟上兔子》绘本五年级第1季A-Magic-Card
- NB∕T 47020~47027-2012 压力容器法兰
- 在线网课知慧《贵州省情(贵州理工学院)》单元测试考核答案
- MOOC 概率统计-西南石油大学 中国大学慕课答案
评论
0/150
提交评论