2024届黑龙江省哈尔滨第六中学数学高一下期末学业水平测试试题含解析_第1页
2024届黑龙江省哈尔滨第六中学数学高一下期末学业水平测试试题含解析_第2页
2024届黑龙江省哈尔滨第六中学数学高一下期末学业水平测试试题含解析_第3页
2024届黑龙江省哈尔滨第六中学数学高一下期末学业水平测试试题含解析_第4页
2024届黑龙江省哈尔滨第六中学数学高一下期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省哈尔滨第六中学数学高一下期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.以两点A(-3,-1)和B(5,5)为直径端点的圆的标准方程是()A.(x-1)2+(y-2)2=10 B.(x-1)2+(y-2)2=100C.(x-1)2+(y-2)2=5 D.(x-1)2+(y-2)2=252.已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则()A. B. C. D.3.圆心为的圆与圆相外切,则圆的方程为()A. B.C. D.4.已知向量满足,.O为坐标原点,.曲线,区域.若是两段分离的曲线,则()A. B. C. D.5.已知等差数列中,,.若公差为某一自然数,则n的所有可能取值为()A.3,23,69 B.4,24,70 C.4,23,70 D.3,24,706.已知函数,若存在满足,且,则n的最小值为()A.3 B.4 C.5 D.67.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度8.圆,那么与圆有相同的圆心,且经过点的圆的方程是().A. B.C. D.9.某程序框图如图所示,若输出的,则判断框内应填()A. B. C. D.10.已知圆锥的母线长为6,母线与轴的夹角为30°,则此圆锥的体积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知当时,函数(且)取得最大值,则时,的值为__________.12.已知:,则的取值范围是__________.13.在中,角,,所对的边分别为,,,若,则角最大值为______.14.若,,则的值为______.15.设,,,若,则实数的值为______16.已知(),则________.(用表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知,,动点满足条件.(1)求点的轨迹的方程;(2)设点是点关于直线的对称点,问是否存在点同时满足条件:①点在曲线上;②三点共线,若存在,求直线的方程;若不存在,请说明理由.18.已知函数,若,且,,求满足条件的,.19.是亚太区域国家与地区加强多边经济联系、交流与合作的重要组织,其宗旨和目标是“相互依存、共同利益,坚持开放性多边贸易体制和减少区域间贸易壁垒.”2017年会议于11月10日至11日在越南岘港举行.某研究机构为了了解各年龄层对会议的关注程度,随机选取了100名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分组区间分别为,,,,).(1)求选取的市民年龄在内的人数;(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与会议的宣传活动,求参与宣传活动的市民中至少有一人的年龄在内的概率.20.在△ABC中,a=3,b−c=2,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.21.的内角所对的边分别为,向量,若.(1)求角的大小;(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】分析:由条件求出圆心坐标和半径的值,从而得出结论.详解:圆心坐标为(1,2),半径r==5,故所求圆的标准方程为(x-1)2+(y-2)2=25.故选D.点睛:本题主要考查求圆的标准方程的方法,求出圆心坐标和半径的值,是解题的关键,属于基础题.2、C【解题分析】

只需根据函数性质逐步得出值即可。【题目详解】因为为奇函数,∴;又,,又∴,故选C。【题目点拨】本题考查函数的性质和函数的求值问题,解题关键是求出函数。3、A【解题分析】

求出圆的圆心坐标和半径,利用两圆相外切关系,可以求出圆的半径,求出圆的标准方程,最后化为一般式方程.【题目详解】设的圆心为A,半径为r,圆C的半径为R,,所以圆心A坐标为,半径r为3,圆心距为,因为两圆相外切,所以有,故圆的标准方程为:,故本题选A.【题目点拨】本题考查了圆与圆的相外切的性质,考查了已知圆的方程求圆心坐标和半径,考查了数学运算能力.4、A【解题分析】

由圆的定义及平面向量数量积的性质及其运算可得:点P在以O为圆心,r为半径的圆上运动且点P在以Q为圆心,半径为1和2的圆环区域运动,由图可得解.【题目详解】建立如图所示的平面直角坐标系,则,,由,则,即点P在以O为圆心,r为半径的圆上运动,又,则点P在以Q为圆心,半径为1和2的圆环区域运动,由图可知:当C∩Ω是两段分离的曲线时,r的取值范围为:3<r<5,故选:A.【题目点拨】本题考查平面向量数量积的性质及其运算,利用数形结合思想,将向量问题转化为圆与圆的位置关系问题,考查转化与化归思想,属于中等题.5、B【解题分析】试题分析:由等差数列的通项公式得,公差,所以,可能为,的所有可能取值为选.考点:1.等差数列及其通项公式;2.数的整除性.6、D【解题分析】

根据正弦函数的性质,对任意(i,j=1,2,3,…,n),都有,因此要使得满足条件的n最小,则尽量让更多的取值对应的点是最值点,然后再对应图象取值.【题目详解】,因为正弦函数对任意(i,j=1,2,3,…,n),都有,要使n取得最小值,尽可能多让(i=1,2,3,…,n)取得最高点,因为,所以要使得满足条件的n最小,如图所示则需取,,,,,,即取,,,,,,即.故选:D【题目点拨】本题主要考查正弦函数的图象,还考查了数形结合的思想方法,属于中档题.7、B【解题分析】

由三角函数的诱导公式可得,再结合三角函数图像的平移变换即可得解.【题目详解】解:由,即为了得到函数的图象,可以将函数的图象向右平移个单位长度,故选:B.【题目点拨】本题考查了三角函数图像的平移变换及三角函数的诱导公式,属基础题.8、B【解题分析】

圆的标准方程为,圆心,故排除、,代入点,只有项经过此点,也可以设出要求的圆的方程:,再代入点,可以求得圆的半径为.故选.点睛:这个题目主要考查圆的标准方程,因为这是一道选择题,故根据与条件中的圆的方程可以得到圆心坐标,进而可以排除几个选项,如果正规方法,就可以按照已知圆心,写出标准方程,代入已知点求出标准方程即可.9、A【解题分析】

根据程序框图的结构及输出结果,逆向推断即可得判断框中的内容.【题目详解】由程序框图可知,,则所以此时输出的值,因而时退出循环.因而判断框的内容为故选:A【题目点拨】本题考查了根据程序框图的输出值,确定判断框的内容,属于基础题.10、B【解题分析】

根据母线长和母线与轴的夹角求得底面半径和圆锥的高,代入体积公式求得结果.【题目详解】由题意可知,底面半径;圆锥的高圆锥体积本题正确选项:【题目点拨】本题考查锥体体积的求解问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】

先将函数的解析式利用降幂公式化为,再利用辅助角公式化为,其中,由题意可知与的关系,结合诱导公式以及求出的值.【题目详解】,其中,当时,函数取得最大值,则,,所以,,解得,故答案为.【题目点拨】本题考查三角函数最值,解题时首先应该利用降幂公式、和差角公式进行化简,再利用辅助角公式化简为的形式,本题中用到了与之间的关系,结合诱导公式进行求解,考查计算能力,属于中等题.12、【解题分析】

由已知条件将两个角的三角函数转化为一个角的三角函数,再运用三角函数的值域求解.【题目详解】由已知得,所以,又因为,所以,解得,所以,故填.【题目点拨】本题考查三角函数的值域,属于基础题.13、【解题分析】

根据余弦定理列式,再根据基本不等式求最值【题目详解】因为所以角最大值为【题目点拨】本题考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,属中档题14、【解题分析】

求出,将展开即可得解.【题目详解】因为,,所以,所以.【题目点拨】本题主要考查了三角恒等式及两角和的正弦公式,考查计算能力,属于基础题.15、【解题分析】

根据题意,可以求出,根据可得出,进行数量积的坐标运算即可求出的值.【题目详解】故答案为:【题目点拨】本题考查向量垂直的坐标表示,属于基础题.16、【解题分析】

根据同角三角函数之间的关系,结合角所在的象限,即可求解.【题目详解】因为,所以,故,解得,又,,所以.故填.【题目点拨】本题主要考查了同角三角函数之间的关系,三角函数在各象限的符号,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)存在点,直线方程为.【解题分析】

(1)设,由题意根据两点间的距离公式即可求解.(2)假设存在点满足题意,此时直线的方程为:.设,,根据题意可得,求出,再将直线与圆联立求出,根据向量共线的坐标表示以及点在圆上,求出即可求解.【题目详解】(1)设,由得,整理得:,所以点的轨迹方程为.(2)假设存在点满足题意,此时直线的方程为:.设,.因为与关于直线对称,所以解得即.由,得,即.此时,,,所以,所以当时,三点共线.若在曲线上,则,整理得,即,所以,即.综上所述,存在点,满足条件①②,此时直线方程为.【题目点拨】本小题主要考查坐标法、圆的标准方程、直线与圆的位置关系等基础知识,考查抽象概括能力、运算求解能力,考查数形结合思想、整体运算思想,化归与转化思想等.18、,【解题分析】

利用三角恒等变换,化简的解析式,从而得出结论.【题目详解】解:,∴,待定系数,可得,又,∴,∴,.【题目点拨】本题主要考查三角恒等变换,属于基础题.19、(1)30人;(2).【解题分析】

(1)由频率分布直方图,先求出年龄在内的频率,进而可求出人数;(2)先由分层抽样,确定应从第3,4组中分别抽取3人,2人,记第3组的3名志愿者分别为,第4组的2名志愿者分别为,再用列举法,分别列举出总的基本事件,以及满足条件的基本事件,基本事件个数比即为所求概率.【题目详解】(1)由题意可知,年龄在内的频率为,故年龄在内的市民人数为.(2)易知,第4组的人数为,故第3,4组共有50名市民,所以用分层抽样的方法在50名志愿者中抽取5名志愿者,每组抽取的人数分别为:第3组;第4组.所以应从第3,4组中分别抽取3人,2人.记第3组的3名志愿者分别为,第4组的2名志愿者分别为,则从5名志愿者中选取2名志愿者的所有情况为,,,,,,,,,,共有10种.其中第4组的2名志愿者至少有一名志愿者被选中的有:,,,,,,,共有7种,所以至少有一人的年龄在内的概率为.【题目点拨】本题主要考查由频率分布直方图求频数,以及古典概型的概率问题,会分析频率分布直方图,熟记古典概型的概率计算公式即可,属于常考题型.20、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)由题意列出关于a,b,c的方程组,求解方程组即可确定b,c的值;(Ⅱ)由题意结合正弦定理和两角和差正余弦公式可得的值.【题目详解】(Ⅰ)由题意可得:,解得:.(Ⅱ)由同角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论