版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省安阳市第三十五中学数学高一第二学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为锐角,,则()A. B. C. D.2.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为()A.7 B.8 C.9 D.103.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.4.在中,,,分别是角,,的对边,且满足,那么的形状一定是()A.等腰三角形 B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形5.已知点,,若直线过原点,且、两点到直线的距离相等,则直线的方程为()A.或 B.或C.或 D.或6.一个圆锥的表面积为,它的侧面展开图是圆心角为的扇形,该圆锥的母线长为()A. B.4 C. D.7.已知集合A={1,2,3,4},B={2,3,4,5},则A∩B中元素的个数是()A.1 B.2 C.3 D.48.已知,则的值等于()A. B. C. D.9.圆与圆的位置关系是()A.内切 B.外切 C.相交 D.相离10.若函数在处取最小值,则等于()A.3 B. C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,向量,若与垂直,则__________.12.382与1337的最大公约数是__________.13.执行如图所示的程序框图,则输出的S的值是______.14.方程组对应的增广矩阵为__________.15.在直角梯形.中,,分别为的中点,以为圆心,为半径的圆交于,点在上运动(如图).若,其中,则的最大值是________.16.用数学归纳法证明“”,在验证成立时,等号左边的式子是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面向量,.(1)若与垂直,求;(2)若,求.18.已知f(x)=ax+ka﹣x(a>0且a≠1)是R上的奇函数,且f(1).(1)求f(x)的解析式;(2)若关于x的方程f(1)+f(1﹣3mx﹣2)=0在区间[0,1]内只有一个解,求m取值集合;(3)是否存在正整数n,使不得式f(2x)≥(n﹣1)f(x)对一切x∈[﹣1,1]均成立?若存在,求出所有n的值若不存在,说明理由19.设数列的前项和,数列为等比数列,且.(1)求数列和的通项公式;(2)设,求数列的前项和.20.已知都是第二象限的角,求的值。21.某工厂共有200名工人,已知这200名工人去年完成的产品数都在区间(单位:万件)内,其中每年完成14万件及以上的工人为优秀员工,现将其分成5组,第1组、第2组第3组、第4组、第5组对应的区间分别为,,,,,并绘制出如图所示的频率分布直方图.(1)选取合适的抽样方法从这200名工人中抽取容量为25的样本,求这5组分别应抽取的人数;(2)现从(1)中25人的样本中的优秀员工中随机选取2名传授经验,求选取的2名工人在同一组的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
先将展开并化简,再根据二倍角公式,计算可得。【题目详解】由题得,,整理得,又为锐角,则,,解得.故选:A【题目点拨】本题考查两角和差公式以及二倍角公式,是基础题。2、B【解题分析】试题分析:设该女子第一天织布尺,则,解得,所以前天织布的尺数为,由,得,解得的最小值为,故选B.考点:等比数列的应用.3、C【解题分析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法:(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.4、C【解题分析】
由正弦定理,可得,.,或,或,即或,即三角形为等腰三角形或直角三角形,故选C.考点:1正弦定理;2正弦的二倍角公式.5、A【解题分析】
分为斜率存在和不存在两种情况,根据点到直线的距离公式得到答案.【题目详解】当斜率不存在时:直线过原点,验证满足条件.当斜率存在时:直线过原点,设直线为:即故答案选A【题目点拨】本题考查了点到直线的距离公式,忽略斜率不存在的情况是容易犯的错误.6、B【解题分析】
设圆锥的底面半径为,母线长为,利用扇形面积公式和圆锥表面积公式,求出圆锥的底面圆半径和母线长.【题目详解】设圆锥的底面半径为,母线长为它的侧面展开图是圆心角为的扇形又圆锥的表面积为,解得:母线长为:本题正确选项:【题目点拨】本题考查了圆锥的结构特征与应用问题,关键是能够熟练应用扇形面积公式和圆锥表面积公式,是基础题.7、C【解题分析】
求出A∩B即得解.【题目详解】由题得A∩B={2,3,4},所以A∩B中元素的个数是3.故选:C【题目点拨】本题主要考查集合的交集的计算,意在考查学生对该知识的理解掌握水平,属于基础题.8、B【解题分析】.9、B【解题分析】
由两圆的圆心距及半径的关系求解即可得解.【题目详解】解:由圆,圆,即,所以圆的圆心坐标为,圆的圆心坐标为,两圆半径,则圆心距,即两圆外切,故选:B.【题目点拨】本题考查了两圆的位置关系的判断,属基础题.10、A【解题分析】
将函数的解析式配凑为,再利用基本不等式求出该函数的最小值,利用等号成立得出相应的值,可得出的值.【题目详解】当时,,则,当且仅当时,即当时,等号成立,因此,,故选A.【题目点拨】本题考查基本不等式等号成立的条件,利用基本不等式要对代数式进行配凑,注意“一正、二定、三相等”这三个条件的应用,考查计算能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解题分析】
由计算可得.【题目详解】,∵与垂直,∴,.故答案为-1.【题目点拨】本题考查向量垂直的坐标运算.由向量垂直得其数量积为0,本题属于基础题.12、191【解题分析】
利用辗转相除法,求382与1337的最大公约数.【题目详解】因为,,所以382与1337的最大公约数为191,故填:.【题目点拨】本题考查利用辗转相除法求两个正整数的最大公因数,属于容易题.13、4【解题分析】
模拟程序运行,观察变量值的变化,寻找到规律周期性,确定输出结果.【题目详解】第1次循环:,;第2次循环:,;第3次循环:,;第4次循环:,;…;S关于i以4为周期,最后跳出循环时,此时.故答案为:4.【题目点拨】本题考查程序框图,考查循环结构.解题关键是由程序确定变量变化的规律:周期性.14、【解题分析】
根据增广矩阵的概念求解即可.【题目详解】方程组对应的增广矩阵为,故答案为:.【题目点拨】本题考查增广矩阵的概念,是基础题.15、【解题分析】
建立直角坐标系,设,根据,表示出,结合三角函数相关知识即可求得最大值.【题目详解】建立如图所示的平面直角坐标系:,分别为的中点,,以为圆心,为半径的圆交于,点在上运动,设,,即,,所以,两式相加:,即,要取得最大值,即当时,故答案为:【题目点拨】此题考查平面向量线性运算,处理平面几何相关问题,涉及三角换元,转化为求解三角函数的最值问题.16、【解题分析】
根据左边的式子是从开始,结束,且指数依次增加1求解即可.【题目详解】因为左边的式子是从开始,结束,且指数依次增加1所以,左边的式子为,故答案为.【题目点拨】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)根据垂直数量积为0求解即可.(2)根据平行的公式求解,再计算即可.【题目详解】解:(1)由已知得,,解得或.因为,所以.(2)若,则,所以或.因为,所以.所以,所以.【题目点拨】本题主要考查了向量垂直与平行的运用以及模长的计算,属于基础题型.18、(1)f(x)=1x﹣1﹣x(2)(﹣∞,2]∪{4}(1)存在正整数n,使不得式f(2x)≥(n﹣1)f(x)对一切x∈[﹣1,1]均成立,且n的值为1,2,1【解题分析】
(1)利用奇函数的性质及f(1)列出方程组,解方程组即可得到函数解析式;
(2)结合函数单调性和函数的奇偶性脱去符号,转化为二次函数的零点分布求解;
(1)分离得,由,得到的范围,由此得出结论.的范围【题目详解】(1)由题意,,解得,∴f(x)=1x﹣1﹣x;(2)由指数函数的性质可知,函数f(x)=1x﹣1﹣x为R上的增函数,故方程f(91)+f(1﹣1mx﹣2)=0即为,即故g(x)=2mx2﹣(4+m)x+2=0在区间[0,1]内只有一个解,①当m=0时,,符合题意;②当m≠0时,由g(0)=2>0,故只需g(1)=2m﹣4﹣m+2≤0,则m≤2且m≠0;③当△=(4+m)2﹣16m=0时,m=4,此时,符合题意;综上,实数m的取值范围为(﹣∞,2]∪{4};(1)f(2x)≥(n﹣1)f(x)即为,∵1x+1﹣x≥2,当且即当“x=0”时取等号,∴n﹣1≤2,即n≤1,∴存在正整数n,使不得式f(2x)≥(n﹣1)f(x)对一切x∈[﹣1,1]均成立,且n的值为1,2,1.【题目点拨】本题考查函数的性质,函数与方程的综合运用,考查转化思想及分类讨论思想,属于中档题.19、(1),;(2)【解题分析】
(1)通过求解数列的通项公式,从而可以求出首项与公比,即可得到的通项公式;(2)化简,利用错位相减法求解数列的和即可.【题目详解】(1)∴,∴,∵,∴,∴,,∵,,∴,从而,∵数列为等比数列∴数列的公比为,从而;(2)∵,,∴∴∴,∴.【题目点拨】本题考查已知求的通项公式以及数列求和,考查计算能力.在通过求的通项公式时,不要忽略时的情况.20、;【解题分析】
根据所处象限可确定的符号,利用同角三角函数关系可求得的值;代入两角和差正弦和余弦公式可求得结果.【题目详解】都是第二象限的角,,【题目点拨】本题考查利用两角和差正弦和余弦公式求值的问题;关键是能够根据角所处的范围和同角三角函数关系求得三角函数值.21、(1)第1组:2;第2组:8,;第3组:9;第4组:3;第5组:3(2)【解题分析】
(1)根据频率之和为列方程,解方程求得的值.然后根据分层抽样的计算方法,计算出每组抽取的人数.(2)利用列举法,结合古典概型概率计算公式,计算出所求概率.【题目
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑行业施工现场安全管理方案
- 公共交通行业人身意外险管理规程
- 巧用信息手段打造疫情中3DS云课堂
- 商超物料库存管理与盘点规范
- 《员工待遇协议》
- 医疗实训基地运行管理制度
- 养老院防疫工作值班制度
- 医院食品安全保障工作总结
- 2023年装配式建筑成本控制方案
- 智能家居系统信息安全应急预案
- GB/T 7909-2017造纸木片
- GB/T 25217.6-2019冲击地压测定、监测与防治方法第6部分:钻屑监测方法
- 中医学课件 治则与治法
- 关于变压器温控器的讲解课件
- 国家开放大学《个人与团队管理》形考任务6参考答案
- 30第六章-抽样方法课件
- 世界咖啡会议
- 电力公司消防知识培训课件
- 人教鄂教版六年级科学上册全册教学设计教案
- 三年级数学趣味竞赛试题课件
- ECMO(体外膜肺氧合)课件
评论
0/150
提交评论