山西省怀仁市一中2024届高一数学第二学期期末考试试题含解析_第1页
山西省怀仁市一中2024届高一数学第二学期期末考试试题含解析_第2页
山西省怀仁市一中2024届高一数学第二学期期末考试试题含解析_第3页
山西省怀仁市一中2024届高一数学第二学期期末考试试题含解析_第4页
山西省怀仁市一中2024届高一数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省怀仁市一中2024届高一数学第二学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列四组中的函数,表示同一个函数的是()A., B.,C., D.,2.如图是某个正方体的平面展开图,,是两条侧面对角线,则在该正方体中,与()A.互相平行 B.异面且互相垂直 C.异面且夹角为 D.相交且夹角为3.如图,已知边长为的正三角形内接于圆,为边中点,为边中点,则为()A. B. C. D.4.经过点,和直线相切,且圆心在直线上的圆方程为()A. B.C. D.5.已知向量,且,则的值为()A. B. C. D.6.下列函数所具有的性质,一定成立的是()A. B.C. D.7.已知等差数列的公差,前项和为,则对正整数,下列四个结论中:(1)成等差数列,也可能成等比数列;(2)成等差数列,但不可能成等比数列;(3)可能成等比数列,但不可能成等差数列;(4)不可能成等比数列,也不叫能成等差数列.正确的是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)8.若,则()A. B. C.或 D.9.设,是两个不同的平面,,是两条不同的直线,且,()A.若,则 B.若,则C.若,则 D.若,则10.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()A.7 B.0或7 C.0 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.若,则__________.12.正方体中,分别是的中点,则所成的角的余弦值是__________.13.已知为的三个内角A,B,C的对边,向量,.若,且,则B=14.已知角终边经过点,则__________.15.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件,为了了解它们的产品质量是否存在显著差异,用分层抽样的方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=.16.已知是第二象限角,且,且______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1km内不能收到手机信号,检查员抽查某市一考点,在考点正西约km/h的的B处有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以每小时12千米的速度沿公路行驶,最多需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?18.平面直角坐标系中,圆M与y轴相切,并且经过点,.(1)求圆M的方程;(2)过点作圆M的两条互垂直的弦AC、BD,求四边形ABCD面积的最大值.19.已知圆:.(1)过的直线与圆:交于,两点,若,求直线的方程;(2)过的直线与圆:交于,两点,直接写出面积取值范围;(3)已知,,圆上是否存在点,使得,请说明理由.20.在中,内角对边分别为,,,已知.(1)求的值;(2)若,,求的面积.21.数列中,,(为常数,1,2,3,…),且.(1)求c的值;(2)求证:①;②;(3)比较++…+与的大小,并加以证明.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

分别判断两个函数的定义域和对应法则是否相同即可.【题目详解】.的定义域为,,两个函数的定义域相同,对应法则相同,所以,表示同一个函数..的定义域为,,两个函数的定义域相同,对应法则不相同,所以,不能表示同一个函数..的定义域为,的定义域为,两个函数的定义域不相同,所以,不能表示同一个函数..的定义域为,的定义域,两个函数的定义域不相同,对应法则相同,所以,不能表示同一个函数.故选.【题目点拨】本题主要考查判断两个函数是否为同一函数,判断的依据主要是判断两个函数的定义域和对应法则是否相同即可.2、D【解题分析】

先将平面展开图还原成正方体,再判断求解.【题目详解】将平面展开图还原成正方体如图所示,则B,C两点重合,所以与相交,连接,则为正三角形,所以与的夹角为.故选D.【题目点拨】本题主要考查空间直线的位置关系,意在考查学生对该知识的理解掌握水平和分析推理能力.3、B【解题分析】

如图,是直角三角形,是等边三角形,,,则与的夹角也是30°,∴,又,∴.故选B.【题目点拨】本题考查平面向量的数量积,解题时可通过平面几何知识求得向量的模,向量之间的夹角,这可简化运算.4、B【解题分析】

设出圆心坐标,由圆心到切线的距离和它到点的距离都是半径可求解.【题目详解】由题意设圆心为,则,解得,即圆心为,半径为.圆方程为.故选:B.【题目点拨】本题考查求圆的标准方程,考查直线与圆的位置关系.求出圆心坐标与半径是求圆标准方程的基本方法.5、B【解题分析】

由向量平行可构造方程求得结果.【题目详解】,解得:故选:【题目点拨】本题考查根据向量平行求解参数值的问题,关键是明确两向量平行可得.6、B【解题分析】

结合反三角函数的性质,逐项判定,即可求解.【题目详解】由题意,对于A中,令,则,所以不正确;对于C中,根据反正弦函数的性质,可得,所以是错误的;对于D中,函数当时,则满足,所以不正确,故选:B.【题目点拨】本题主要考查了反三角函数的性质的应用,其中解答中熟记反三角函数的性质,逐项判定是解答的关键,着重考查了推理与运算能力,属于基础题.7、D【解题分析】试题分析:根据等差数列的性质,,,,因此(1)错误,(2)正确,由上显然有,,,,故(3)错误,(4)正确.即填(2)(4).考点:等差数列的前项和,等差数列与等比数列的定义.8、D【解题分析】

利用诱导公式变形,再化弦为切求解.【题目详解】由诱导公式化简得,又,所以原式.故选D【题目点拨】本题考查三角函数的化简求值,考查倍角公式及诱导公式的应用,也考查了化弦为切的思想,属于基础题.9、A【解题分析】试题分析:由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得考点:空间线面平行垂直的判定与性质10、B【解题分析】

根据直线和直线平行则斜率相等,故m(m-1)=3m×2,求解即可。【题目详解】∵直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,∴m(m-1)=3m×2,∴m=0或7,经检验,都符合题意,故选B.【题目点拨】本题属于基础题,利用直线的平行关系,斜率相等求解参数。二、填空题:本大题共6小题,每小题5分,共30分。11、;【解题分析】

易知的周期为,从而化简求得.【题目详解】的周期为,且,又,.故答案为:【题目点拨】本题考查了正弦型函数的周期以及利用周期求函数值,属于基础题.12、【解题分析】

取的中点,由得出异面直线与所成的角为,然后在由余弦定理计算出,可得出结果.【题目详解】取的中点,由且可得为所成的角,设正方体棱长为,中利用勾股定理可得,又,由余弦定理可得,故答案为.【题目点拨】本题考查异面直线所成角的计算,一般利用平移直线找出异面直线所成的角,再选择合适的三角形,利用余弦定理或锐角三角函数来计算,考查空间想象能力与计算能力,属于中等题.13、【解题分析】

根据得,再利用正弦定理得,化简得出角的大小。再根据三角形内角和即可得B.【题目详解】根据题意,由正弦定理可得则所以答案为。【题目点拨】本题主要考查向量与三角形正余弦定理的综合应用,属于基础题。14、4【解题分析】

根据任意角的三角函数的定义,结合同角三角函数的基本关系求解即可.【题目详解】因为角终边经过点,所以,因此.故答案为:4【题目点拨】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,属于基础题.15、13【解题分析】(解法1)由分层抽样得,解得n=13.(解法2)从甲乙丙三个车间依次抽取a,b,c个样本,则120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.16、【解题分析】

利用同角三角函数的基本关系求出,然后利用诱导公式可求出的值.【题目详解】是第二象限角,则,由诱导公式可得.故答案为:.【题目点拨】本题考查利用同角三角函数的基本关系和诱导公式求值,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、答案见解析.【解题分析】

由题意利用正弦定理首先求得的大小,然后确定检查员检查合格的方法即可.【题目详解】检查开始处为,设公路上两点到考点的距离均为1km.在中,,由正弦定理,得,,.在中,,为等边三角形,.在段需要5min,在段需要5min.则最多需要5min,检查员开始收不到信号,并至少持续5min.【题目点拨】本题主要考查正弦定理的应用,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.18、(1);(2)最大值为1.【解题分析】

(1)通过分析题意,可设圆心坐标为,再通过待定系数法即可求得。(2)若采用直线方程和圆的方程联立求解相对较为复杂,可采用将题设条件转化为圆心到直线距离问题,结合勾股定理可大大简化运算,最后再结合均值不等式进行求解。【题目详解】解:(1)由题意,M在线段PQ的垂直平分线(即x轴)上,设;由圆M与y轴相切,所以圆M的半径为,圆M的标准方程为,代入,解得,所以圆M的方程为.(2)设圆心M到直线AC,BD的距离分别为m,n,则,且,,四边形ABCD的面积因为,且m,n均为非负数,所以,当且仅当,等号成立;综上,四边形ABCD面积的最大值为1.【题目点拨】圆的弦长问题转化为点到直线的距离问题往往化繁为简19、(1)或;(2);(3)存在,理由见解析【解题分析】

求得圆的圆心和半径.(1)设出直线的方程,利用弦长、勾股定理和点到直线距离列方程,解方程求得直线的斜率,进而求得直线的方程.(2)利用三角形的面积公式列式,由此求得面积取值范围.(3)求得三角形外接圆的方程,根据圆和圆的位置关系,判断出点存在.【题目详解】圆心为,半径为.(1)直线有斜率,设:,圆心到直线的距离为,∵,则由,得,直线的方程为或(2)依题意可知,三角形的面积为,由于,所以,所以.(3)设三角形的外接圆圆心为(),半径为,由正弦定理得,,所以,所以圆的圆心为,所以圆的方程为,圆与圆满足圆心距:,∴圆与圆相交于两点,圆上存在两个这样的点,满足题意.【题目点拨】本小题主要考查直线和圆的位置关系,考查圆和圆的位置关系,考查三角形的面积公式,考查化归与转化的数学思想方法,属于中档题.20、(1)2(2)【解题分析】

(1)在题干等式中利用边化角思想,结合两角和的正弦公式、内角和定理以及诱导公式计算出,再利用角化边的思想可得出的比值;(2)由(1)中的结果,结合余弦定理求出和的值,再利用同角三角函数的平方关系求出,最后利用三角形的面积公式求出的面积.【题目详解】(1)由正弦定理得,则,所以,即,化简可得.又,所以.所以,即.(2)由(1)知.由余弦定理及,,得,.解得,因此因为,且所以因此.【题目点拨】在解三角形的问题时,要根据已知元素的类型合理选择正弦定理与余弦定理解三角形,除此之外,在有边和角的等式中,优先边化角,利用三角恒等变换思想化简求解,能起到简化计算的作用.21、(1);(2)①见证明;②见证明;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论