江苏盐城市时杨中学2024届数学高一第二学期期末学业质量监测模拟试题含解析_第1页
江苏盐城市时杨中学2024届数学高一第二学期期末学业质量监测模拟试题含解析_第2页
江苏盐城市时杨中学2024届数学高一第二学期期末学业质量监测模拟试题含解析_第3页
江苏盐城市时杨中学2024届数学高一第二学期期末学业质量监测模拟试题含解析_第4页
江苏盐城市时杨中学2024届数学高一第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏盐城市时杨中学2024届数学高一第二学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.设,则使函数的定义域是,且为偶函数的所有的值是()A.0,2 B.0,-2 C. D.23.下列函数中,值域为的是()A. B. C. D.4.若数列前12项的值各异,且对任意的都成立,则下列数列中可取遍前12项值的数列为()A. B. C. D.5.设等比数列{an}的前n项和为Sn,若S6A.73 B.2 C.86.已知,则下列不等式成立的是()A. B. C. D.7.中,,则()A. B. C.或 D.08.边长为1的正方形上有一动点,则向量的范围是()A. B. C. D.9.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为()A.5 B.10 C.15 D.2010.过点斜率为-3的直线的一般式方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值为_____________12.若为锐角,,则__________.13.数列an满足12a114.当,时,执行完如图所示的一段程序后,______.15.已知正数、满足,则的最大值为__________.16.______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,平行四边形中,是的中点,交于点.设,.(1)分别用,表示向量,;(2)若,,求.18.如图,在直三棱柱中,,,是棱的中点.(1)求证:;(2)求证:.19.为迎接世博会,要设计如图的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为60000,四周空白的宽度为10cm,栏与栏之间的中缝空白的宽度为5cm,怎样确定广告矩形栏目高与宽的尺寸(单位:cm),能使整个矩形广告面积最小.20.在平面直角坐标系中,已知点与两个定点,的距离之比为.(1)求点的坐标所满足的关系式;(2)求面积的最大值;(3)若恒成立,求实数的取值范围.21.如图所示,在直三棱柱中,,,M、N分别为、的中点.求证:平面;求证:平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】试题分析:当时,直线为和直线,斜率之积等于,所以垂直;当两直线垂直时,,解得:或,根据充分条件必要条件概念知,“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的充分不必要条件,故选B.考点:1、充分条件、必要条件;2、两条直线垂直的关系.2、D【解题分析】

根据幂函数的性质,结合题中条件,即可得出结果.【题目详解】若函数的定义域是,则;又函数为偶函数,所以只能使偶数;因为,所以能取的值为2.故选D【题目点拨】本题主要考查幂函数性质的应用,熟记幂函数的性质即可,属于常考题型.3、B【解题分析】

依次判断各个函数的值域,从而得到结果.【题目详解】选项:值域为,错误选项:值域为,正确选项:值域为,错误选项:值域为,错误本题正确选项:【题目点拨】本题考查初等函数的值域问题,属于基础题.4、C【解题分析】

根据题意可知利用除以12所得的余数分析即可.【题目详解】由题知若要取遍前12项值的数列,则需要数列的下标能够取得除以12后所有的余数.因为12的因数包括3,4,6,故不能除以12后取所有的余数.如除以12的余数只能取1,4,7,10的循环余数.又5不能整除12,故能够取得除以12后取所有的余数.故选:C【题目点拨】本题主要考查了数列下标整除与余数的问题,属于中等题型.5、A【解题分析】解:因为等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n成等比,(Sn≠0)所以S66、D【解题分析】

利用排除法,取,,可排除错误选项,再结合函数的单调性,可证明D正确.【题目详解】取,,可排除A,B,C,由函数是上的增函数,又,所以,即选项D正确.故选:D.【题目点拨】本题考查不等式的性质,考查学生的推理论证能力,属于基础题.7、D【解题分析】

根据正弦定理把角化为边,可得,然后根据余弦定理,可得,最后使用余弦定理,可得结果.【题目详解】由,所以,即由,又所以,则故,又故选:D【题目点拨】本题考查正弦定理、余弦定理的应用,属基础题.8、A【解题分析】

分类,按在正方形的四条边上分别求解.【题目详解】如图,分别以为建立平面直角坐标系,,设,,∴,当在边或上时,,所以,当在边上时,,,当在边上时,,,∴的取值范围是.故选:A.【题目点拨】本题考查平面向量的数量积,通过建立坐标系,把向量和数量积用坐标表示,使问题简单化.9、B【解题分析】

利用分层抽样的定义和方法求解即可.【题目详解】设应抽取的女生人数为,则,解得.故选B【题目点拨】本题主要考查分层抽样的定义及方法,意在考查学生对这些知识的理解掌握水平,属于基础题.10、A【解题分析】

由点和斜率求出点斜式方程,化为一般式方程即可.【题目详解】解:过点斜率为的直线方程为,化为一般式方程为;故选:.【题目点拨】本题考查了由点以及斜率求点斜式方程的问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

利用和差化积公式将两式化简,然后两式相除得到的值,再利用二倍角公式即可求出.【题目详解】由得,,,两式相除得,,则.【题目点拨】本题主要考查和差化积公式以及二倍角公式的应用.12、【解题分析】因为为锐角,,所以,.13、14,n=1【解题分析】

试题分析:这类问题类似于Sn=f(an)的问题处理方法,在12a1+122a2+...+1.考点:数列的通项公式.14、1【解题分析】

模拟程序运行,可得出结论.【题目详解】时,满足,所以.故答案为:1.【题目点拨】本题考查程序框图,考查条件结构,解题时模拟程序运行即可.15、【解题分析】

直接利用均值不等式得到答案.【题目详解】,当即时等号成立.故答案为:【题目点拨】本题考查了均值不等式,意在考查学生的计算能力.16、【解题分析】

,,故答案为.考点:三角函数诱导公式、切割化弦思想.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)2【解题分析】

(1)由平面的加法可得,又根据三角形相似得到,再根据向量的减法可得的不等式.

(2)由平面向量数量积运算得,然后再将条件代入可得答案.【题目详解】(1).由∽,又所以,即(2)由,【题目点拨】本题考查了平面向量的线性运算及平面向量数量积运算,属中档题.18、(1)见详解;(2)见详解.【解题分析】

(1)连接AC1,设AC1∩A1C=O,连接OD,可求O为AC1的中点,D是棱AB的中点,利用中位线的性质可证OD∥BC1,根据线面平行的判断定理即可证明BC1∥平面A1CD.(2)由(1)可证平行四边形ACC1A1是菱形,由其性质可得AC1⊥A1C,利用线面垂直的性质可证AB⊥AA1,根据AB⊥AC,利用线面垂直的判定定理可证AB⊥平面ACC1A1,利用线面垂直的性质可证AB⊥A1C,又AC1⊥A1C,根据线面垂直的判定定理可证A1C⊥平面ABC1,利用线面垂直的性质即可证明BC1⊥A1C.【题目详解】(1)连接AC1,设AC1∩A1C=O,连接OD,在直三棱柱ABC﹣A1B1C1中,侧面ACC1A1是平行四边形,所以:O为AC1的中点,又因为:D是棱AB的中点,所以:OD∥BC1,又因为:BC1⊄平面A1CD,OD⊂平面A1CD,所以:BC1∥平面A1CD.(2)由(1)可知:侧面ACC1A1是平行四边形,因为:AC=AA1,所以:平行四边形ACC1A1是菱形,所以:AC1⊥A1C,在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,因为:AB⊂平面ABC,所以:AB⊥AA1,又因为:AB⊥AC,AC∩AA1=A,AC⊂平面ACC1A1,AA1⊂平面ACC1A1,所以:AB⊥平面ACC1A1,因为:A1C⊂平面ACC1A1,所以:AB⊥A1C,又因为:AC1⊥A1C,AB∩AC1=A,AB⊂平面ABC1,AC1⊂平面ABC1,所以:A1C⊥平面ABC1,因为:BC1⊂平面ABC1,所以:BC1⊥A1C.【题目点拨】本题主要考查了线面平行的判定,线面垂直的性质,线面垂直的判定,考查了空间想象能力和推理论证能力,属于中档题.19、高200,宽100【解题分析】

设广告矩形栏目高与宽分别为acm,cm整个矩形广告面积为当且仅当时取等号20、(1)(2)3;(3)【解题分析】

(1)根据题意,结合两点间距离公式,可以得到等式,化简后得到点的坐标所满足的关系式;(2)设是曲线上任一点,求出的表达式,结合的取值范围,可以求出面积的最大值;(3)恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,利用点到直线距离公式,可以求出取得最大和最小值,最后可以求出实数的取值范围.【题目详解】(1)设的坐标是,由,得,化简得.(2)由(1)得,点在以为圆心,为半径的圆上.设是曲线上任一点,则,又,故的最大值为:.(3)由(1)得:圆的方程是若恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,由得:,,故当时,原不等式恒成立.【题目点拨】本题考查了求点的轨迹方程,考查了直线与圆的位置关系,考查了求三角形面积最大值问题,考查了数学运算能力.21、(1)见解析;(2)见解析.【解题分析】

(1)推导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论