江苏省淮安市观音寺初中2024届数学高一第二学期期末统考模拟试题含解析_第1页
江苏省淮安市观音寺初中2024届数学高一第二学期期末统考模拟试题含解析_第2页
江苏省淮安市观音寺初中2024届数学高一第二学期期末统考模拟试题含解析_第3页
江苏省淮安市观音寺初中2024届数学高一第二学期期末统考模拟试题含解析_第4页
江苏省淮安市观音寺初中2024届数学高一第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省淮安市观音寺初中2024届数学高一第二学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列{an}的通项公式an=,若{an}前n项和为24,则n为().A.25 B.576 C.624 D.6252.在正四棱柱中,,,则与所成角的余弦值为()A. B. C. D.3.下列函数中最小值为4的是()A. B.C. D.4.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的()A.5 B.4 C.3 D.95.若不等式的解集为空集,则实数a的取值范围是()A. B. C. D.6.某学校高一、高二、高三教师人数分别为100、120、80,为了解他们在“学习强国”平台上的学习情况,现用分层抽样的方法抽取容量为45的样本,则抽取高一教师的人数为()A.12 B.15 C.18 D.307.在中,角,,所对的边分别为,,,若,且,则的面积的最大值为()A. B. C. D.8.已知,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,在圆心角为直角的扇形中,分别以为直径作两个半圆,在扇形内随机取一点,则此点取自阴影部分的概率是()A. B. C. D.10.在中,,,则的最小值是()A.2 B.4 C. D.12二、填空题:本大题共6小题,每小题5分,共30分。11.夏季某座高山上的温度从山脚起每升高100米降低0.8度,若山脚的温度是36度,山顶的温度是20度,则这座山的高度是________米12.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.13.已知,为锐角,且,则__________.14.在中,,,是的中点.若,则________.15.长时间的低头,对人的身体如颈椎、眼睛等会造成定的损害,为了了解某群体中“低头族”的比例,现从该群体包含老、中、青三个年龄段的人中采用分层抽样的方法抽取人进行调查,已知这人里老、中、青三个年龄段的分配比例如图所示,则这个群体里青年人人数为_____16.如图所示,已知点,单位圆上半部分上的点满足,则向量的坐标为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四边形中,,,,.(1)若,求;(2)求四边形面积的最大值.18.已知、、是同一平面内的三个向量,其中=(1,2),=(﹣2,3),=(﹣2,m)(1)若⊥(+),求||;(2)若k+与2﹣共线,求k的值.19.已知二次函数满足以下要求:①函数的值域为;②对恒成立。求:(1)求函数的解析式;(2)设,求时的值域。20.扇形AOB中心角为,所在圆半径为,它按如图(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.(1)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设;(2)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设;试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?21.已知圆,直线平分圆.(1)求直线的方程;(2)设,圆的圆心是点,对圆上任意一点,在直线上是否存在与点不重合的点,使是常数,若存在,求出点坐标;若不存在,说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】an==-(),前n项和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故选C.2、A【解题分析】

连结,结合几何体的特征,直接求解与所成角的余弦值即可.【题目详解】如图所示:在正四棱柱中,=1,=2,连结,则与所成角就是中的,所以与所成角的余弦值为:==.故选A.【题目点拨】本题考查正四棱柱的性质,直线与直线所成角的求法,考查空间想象能力以及计算能力,属于基础题.3、C【解题分析】

对于A和D选项不能保证基本不等式中的“正数”要求,对于B选项不能保证基本不等式中的“相等”要求,即可选出答案.【题目详解】对于A,当时,显然不满足题意,故A错误.对于B,,,.当且仅当,即时,取得最小值.但无解,故B错误.对于D,当时,显然不满足题意,故D错误.对于C,,,.当且仅当,即时,取得最小值,故C正确.故选:C【题目点拨】本题主要考查基本不等式,熟练掌握基本不等式的步骤为解题的关键,属于中档题.4、B【解题分析】

由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出,分析循环中各变量的变化情况,可得答案.【题目详解】当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,不满足进行循环的条件;故选:B【题目点拨】本题主要考查程序框图,解题的关键是读懂流程图各个变量的变化情况,属于基础题.5、D【解题分析】

对分两种情况讨论分析得解.【题目详解】当时,不等式为,所以满足题意;当时,,综合得.故选:D【题目点拨】本题主要考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平,属于基础题.6、B【解题分析】

由分层抽样方法即按比例抽样,运算即可得解.【题目详解】解:由分层抽样方法可得抽取高一教师的人数为,故选:B.【题目点拨】本题考查了分层抽样方法,属基础题.7、A【解题分析】

由以及,结合二倍角的正切公式,可得,根据三角形的内角的范围可得,由余弦定理以及基本不等式可得,再根据面积公式可得答案.【题目详解】因为,且,所以,所以,则.由于为定值,由余弦定理得,即.根据基本不等式得,即,当且仅当时,等号成立.所以.故选:A【题目点拨】本题考查了二倍角的正切公式,考查了余弦定理,考查了基本不等式,考查了三角形的面积公式,属于中档题.8、B【解题分析】∵,∴,,,∴,∴点在第二象限,故选B.点睛:本题主要考查了由三角函数值的符号判断角的终边位置,属于基础题;三角函数值符号记忆口诀记忆技巧:一全正、二正弦、三正切、四余弦(为正).即第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.9、A【解题分析】试题分析:设扇形半径为,此点取自阴影部分的概率是,故选B.考点:几何概型.【方法点晴】本题主要考查几何概型,综合性较强,属于较难题型.本题的总体思路较为简单:所求概率值应为阴影部分的面积与扇形的面积之比.但是,本题的难点在于如何求阴影部分的面积,经分析可知阴影部分的面积可由扇形面积减去以为直径的圆的面积,再加上多扣一次的近似“椭圆”面积.求这类图形面积应注意切割分解,“多还少补”.10、C【解题分析】

根据,,得到,,平方计算得到最小值.【题目详解】故答案为C【题目点拨】本题考查了向量的模,向量运算,均值不等式,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、2000【解题分析】

由题意得,温度下降了,再求出这个温度是由几段100米得出来的,最后乘以100即可.【题目详解】由题意得,这座山的高度为:米故答案为:2000【题目点拨】本题结合实际问题考查有理数的混合运算,解题关键是温度差里有几个0.8,属于基础题.12、371【解题分析】

由系统抽样,编号是等距出现的规律可得,分层抽样是按比例抽取人数.【题目详解】第8组编号是22+5+5+5=37,分层抽样,40岁以下抽取的人数为50%×40=1(人).故答案为:37;1.【题目点拨】本题考查系统抽样和分层抽样,属于基础题.13、【解题分析】

由题意求得,再利用两角和的正切公式求得的值,可得的值.【题目详解】,为锐角,且,即,.再结合,则,故答案为.【题目点拨】本题主要考查两角和的正切公式的应用,属于基础题.14、【解题分析】

在中,由已知利用余弦定理可得,结合,解得,可求,在中,由余弦定理可得的值.【题目详解】由题意,在中,由余弦定理可得:可得:所以:…………①又……………②所以联立①②,解得.所以在中,由余弦定理得:即故答案为:【题目点拨】本题考查利用余弦定理解三角形,属于中档题.15、【解题分析】

根据饼状图得到青年人的分配比例;利用总数乘以比例即可得到青年人的人数.【题目详解】由饼状图可知青年人的分配比例为:这个群体里青年人的人数为:人本题正确结果:【题目点拨】本题考查分层抽样知识的应用,属于基础题.16、【解题分析】

设点,由和列方程组解出、的值,可得出向量的坐标.【题目详解】设点的坐标为,则,由,得,解得,因此,,故答案为.【题目点拨】本题考查向量的坐标运算,解题时要将一些条件转化为与向量坐标相关的等式,利用方程思想进行求解,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)直接利用余弦定理,即可得到本题答案;(2)由四边形ABCD的面积=,得四边形ABCD的面积,求S的最大值即可得到本题答案.【题目详解】(1)当时,在中,由余弦定理得,设(),则,即,解得,所以;(2)的面积为,在中,由余弦定理得,所以,的面积为,所以,四边形的面积为,因为,所以当时,四边形的面积最大,最大值为.【题目点拨】本题主要考查利用余弦定理、面积公式及三角函数的性质解决实际问题.18、(1);(2)-2【解题分析】

(1)根据向量的坐标的运算法则和向量垂直的条件,以及模的定义即可求出;(2)根据向量共线的条件即可求出.【题目详解】(1)∵,∴,,∴m=﹣1∴∴=(2)由已知:,,因为,所以:k﹣2=4(2k+3),∴k=﹣2【题目点拨】本题考查了向量的坐标运算以及向量的垂直和平行,属于基础题.19、(1);(2)【解题分析】

(1)将写成顶点式,然后根据最小值和对称轴进行分析;(2)先将表示出来,然后利用换元法以及对勾函数的单调性求解值域.【题目详解】解:(1)∵又∵∴对称轴为∵值域为∴且∴,,则函数(2)∵∵∴令,则∴∵∴,则所求值域为【题目点拨】对于形如的函数,其单调增区间是:和,单调减区间是:和.20、方式一最大值【解题分析】

试题分析:(1)运用公式时要注意审查公式成立的条件,要注意和差、倍角的相对性,要注意升幂、降幂的灵活运用;(2)重视三角函数的三变:三变指变角、变名、变式;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等,适当选择公式进行变形;(3)把形如化为,可进一步研究函数的周期、单调性、最值和对称性.试题解析:解(1)在中,设,则又当即时,(Ⅱ)令与的交点为,的交点为,则,于是,又当即时,取得最大值.,(Ⅰ)(Ⅱ)两种方式下矩形面积的最大值为方式一:考点:把实际问题转化为三角函数求最值问题.21、(1)直线的方程为.(2)见解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论