版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届抚顺市重点中学数学高一第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某防疫站对学生进行身体健康调查,与采用分层抽样的办法抽取样本.某中学共有学生2000名,抽取了一个容量为200的样本,样本中男生103人,则该中学共有女生()A.1030人 B.97人 C.950人 D.970人2.下列函数中,在区间上为增函数的是().A. B. C. D.3.等差数列的前n项和为,且,,则(
)A.10 B.20 C. D.4.的内角的对边分别为,若,则()A. B. C. D.5.直线l:的倾斜角为()A. B. C. D.6.对于不同的直线l、、及平面,下列命题中错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.如图,在三角形中,点是边上靠近的三等分点,则()A. B.C. D.8.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的最小值为()A.1 B.2 C. D.9.设集合,则()A. B. C. D.10.已知直线的方程为,,则直线的倾斜角范围()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为等差数列,为其前项和,若,则,则______.12.已知,则______.13.已知数列的前项和为,若,则______.14.数列的前项和为,,,则________.15.已知数列的前项和是,且,则______.(写出两个即可)16.设,其中,则的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)若关于x的不等式2x>m(x2+6)的解集为{x|x<﹣3或x>﹣2},求不等式5mx2+x+3>0的解集.(2)若2kx<x2+4对于一切的x>0恒成立,求k的取值范围.18.求函数的最大值19.已知圆:和点,,,.(1)若点是圆上任意一点,求;(2)过圆上任意一点与点的直线,交圆于另一点,连接,,求证:.20.已知函数().(1)若在区间上的值域为,求实数的值;(2)在(1)的条件下,记的角所对的边长分别为,若,的面积为,求边长的最小值;(3)当,时,在答题纸上填写下表,用五点法作出的图像,并写出它的单调递增区间.021.已知,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由分层抽样的办法可知在名学生中抽取的男生有,故女生人数为,应选答案D.2、B【解题分析】试题分析:根据初等函数的图象,可得函数在区间(0,1)上的单调性,从而可得结论.解:由题意,A的底数大于0小于1、C是图象在一、三象限的单调减函数、D是余弦函数,,在(0,+∞)上不单调,B的底数大于1,在(0,+∞)上单调增,故在区间(0,1)上是增函数,故选B考点:函数的单调性点评:本题考查函数的单调性,掌握初等函数的图象与性质是关键.3、D【解题分析】
由等差数列的前项和的性质可得:,,也成等差数列,即可得出.【题目详解】解:由等差数列的前项和的性质可得:,,也成等差数列,,,解得.故选:.【题目点拨】本题考查了等差数列的前项和公式及其性质,考查了推理能力与计算能力,属于中档题.4、B【解题分析】
首先通过正弦定理将边化角,于是求得,于是得到答案.【题目详解】根据正弦定理得:,即,而,所以,又为三角形内角,所以,故选B.【题目点拨】本题主要考查正弦定理的运用,难度不大.5、C【解题分析】
由直线的斜率,又,再求解即可.【题目详解】解:由直线l:,则直线的斜率,又,所以,即直线l:的倾斜角为,故选:C.【题目点拨】本题考查了直线倾斜角的求法,属基础题.6、C【解题分析】
由平面的基本性质及其推论得:对于选项C,可能l∥n或l与n相交或l与n异面,即选项C错误,得解.【题目详解】由平行公理4可得选项A正确,由线面垂直的性质可得选项B正确,由异面直线所成角的定义可得选项D正确,对于选项C,若l∥α,n∥α,则l∥n或l与n相交或l与n异面,即选项C错误,故选C.【题目点拨】本题考查了平面中线线、线面的关系及性质定理与推论的应用,属简单题.7、A【解题分析】
利用向量的三角形法则以及线性运算法则进行运算,即可得出结论.【题目详解】因为点是边上靠近的三等分点,所以,所以,故选:A.【题目点拨】本题考查向量的加、减法以及数乘运算,需要学生熟练掌握三角形法则和共线定理.8、B【解题分析】
求得圆心到直线的距离,减去圆的半径,求得△ABP面积的最小时,三角形的高,由此求得△ABP面积的最小值.【题目详解】依题意设,故.圆的圆心为,半径为,所以圆上的点到直线的距离的最小值为(其中为圆心到直线的距离),所以△ABP面积的最小值为.故选:B【题目点拨】本小题主要考查圆上的点到直线的距离的最小值的求法,考查三角形面积的最值的求法,属于基础题.9、B【解题分析】
先求得集合,再结合集合的交集的概念及运算,即可求解.【题目详解】由题意,集合,所以.故选:B.【题目点拨】本题主要考查了集合的交集的运算,其中解答中正确求解集合B,结合集合的交集的概念与运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.10、B【解题分析】
利用直线斜率与倾斜角的关系即可求解.【题目详解】由直线的方程为,所以,即直线的斜率,由.所以,又直线的倾斜角的取值范围为,由正切函数的性质可得:直线的倾斜角为.故选:B【题目点拨】本题考查了直线的斜率与倾斜角之间的关系,同时考查了正弦函数的值域以及正切函数的性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用等差中项的性质求出的值,再利用等差中项的性质求出的值.【题目详解】由等差中项的性质可得,得,由等差中项的性质得,.故答案为:.【题目点拨】本题考查等差数列中项的计算,充分利用等差中项的性质进行计算是解题的关键,考查计算能力,属于基础题.12、【解题分析】
由题意得出,然后在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【题目详解】由题意得出.故答案为:.【题目点拨】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.13、【解题分析】
利用和的关系计算得到答案.【题目详解】当时,满足通项公式故答案为【题目点拨】本题考查了和的关系,忽略的情况是容易发生的错误.14、18【解题分析】
利用,化简得到数列是首项为,公比为的等比数列,利用,即可求解.【题目详解】,即所以数列是首项为,公比为的等比数列即所以故答案为:【题目点拨】本题主要考查了与的关系以及等比数列的通项公式,属于基础题.15、或【解题分析】
利用已知求的公式,即可算出结果.【题目详解】(1)当,得,∴,∴.(2)当时,,两式作差得,,化简得,∴或,即(常数)或,当(常数)时,数列是以1为首项,2为公差的等差数列,所以;当时,数列是以1为首项,﹣1为公比的等比数列,所以.【题目点拨】本题主要考查利用与的关系公式,即,求的方法应用.16、【解题分析】
由两角差的正弦公式以及诱导公式,即可求出的值.【题目详解】,所以,因为,故.【题目点拨】本题主要考查两角差的正弦公式的逆用以及诱导公式的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)原不等式等价于根据不等式的解集由根与系数的关系可得关于的方程,解出的值,进而求得的解集;(2)由对于一切的恒成立,可得,求出的最小值即可得到的取值范围.【题目详解】(1)原不等式等价于,所以的解集为则,,所以等价于,即,所以,所以不等式的解集为(2)因为,由,得,当且仅当时取等号.【题目点拨】本题主要考查了一元二次不等式的解法,不等式恒成立问题和基本不等式,考查了方程思想和转化思想,属基础题.18、最大值为5【解题分析】
本题首先可以根据同角三角函数关系以及配方将函数化简为,然后根据即可得出函数的最大值.【题目详解】,因为,所以当时,即,函数最大,令,,故最大值为.【题目点拨】本题考查同角三角函数关系以及一元二次函数的相关性质,考查的公式为,考查计算能力,体现了综合性,是中档题.19、(1)2(2)见证明【解题分析】
(1)设点的坐标为,得出,利用两点间的距离公式以及将关系式代入可求出的值;(2)对直线的斜率是否存在分类讨论。①直线的斜率不存在时,由点、的对称性证明结论;②直线的斜率不存在时,设直线的方程为,设点、,将直线的方程与圆的方程联立,列出韦达定理,通过计算直线和的斜率之和为零来证明结论成立。【题目详解】(1)证明:设,因为点是圆上任意一点,所以,所以,(2)①当直线的倾斜角为时,因为点、关于轴对称,所以.②当直线的倾斜角不等于时,设直线的斜率为,则直线的方程为.设、,则,.,,.【题目点拨】本题考查直线与圆的位置关系问题,考查两点间的距离公式、韦达定理在直线与圆的综合问题的处理,本题的关键在于将角的关系转化为斜率之间的关系来处理,另外,利用韦达定理求解直线与圆的综合问题时,其基本步骤如下:(1)设直线的方程以及直线与圆的两交点坐标、;(2)将直线方程与圆的方程联立,列出韦达定理;(3)将问题对象利用代数式或等式表示,并进行化简;(4)将韦达定理代入(3)中的代数式或等式进行化简计算。20、(1);(2);(3)填表见解析,作图见解析,().【解题分析】
(1)利用二倍角公式和辅助角公式可把化简为,再求出的范围后根据正弦函数的性质可得关于的方程组,解方程组可得它们的值.(2)先求出,再根据面积求出,最后根据余弦定理和基本不等式可求的最小值.(3)根据五点法直接作出图像,再根据正弦函数的性质可得函数的单调增区间.【题目详解】,当时,,则.因为,所以,解得,即.(2)由,得,又的面积为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 油封外夹圈课程设计
- 用到pcb的课程设计
- 幼儿园环保标识课程设计
- 煤油化工原理课程设计
- 红火的新年课程设计
- 炼铁学课程设计
- 早教外语艺术课程设计
- 系统布置分析slp课程设计
- 电子课程设计英文
- 狗狗饲养课程设计案例
- 高中地理学业水平考试知识点(全套)
- 转速、电流双闭环直流调速系统设计
- 工程总承包EPC实施方案
- 2021-2022学年安徽省铜陵市铜官区六年级(上)期末数学试卷答案与祥细解析
- 民间儒教安龙谢土《土皇经》
- 胖东来超市部收银员服务标准
- 6南宁骏业货币资金审计工作底稿
- 环氧树脂的固化机理及其常用固化剂.ppt
- 反恐怖应急预案
- 关于成立电子产品公司商业计划书(参考模板)
- DNA 亲子鉴定书 范本
评论
0/150
提交评论