版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省合肥市三十五中高一数学第二学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知、的取值如下表所示:如果与呈线性相关,且线性回归方程为,则()A. B. C. D.2.的值等于()A. B.- C. D.-3.等差数列满足,则其前10项之和为()A.-9 B.-15 C.15 D.4.将函数的图像上的所有点向右平移个单位长度,得到函数的图像,若的部分图像如图所示,则函数的解析式为A. B.C. D.5.若三个实数a,b,c成等比数列,其中a=3-5,c=3+A.2 B.-2 C.±2 D.46.在区间随机取一个实数,则的概率为()A. B. C. D.7.已知m,n是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,则C.若,,,则 D.若,,则8.设是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,,则B.若,,则C.若,,则是异面直线D.若,,,则9.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:322118342978645407325242064438122343567735789056428442125331345786073625300732862345788907236896080432567808436789535577348994837522535578324577892345若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号为()A.522 B.324 C.535 D.57810.直线x-2y+2=0关于直线x=1对称的直线方程是()A.x+2y-4=0 B.2x+y-1=0 C.2x+y-3=0 D.2x+y-4=0二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,有以下结论:①若,则;②在区间上是增函数;③的图象与图象关于轴对称;④设函数,当时,.其中正确的结论为__________.12.等差数列中,,则其前12项之和的值为______13.若、是方程的两根,则__________.14.已知实数满足,则的最小值为_______.15.计算:=_______________.16.向量.若向量,则实数的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在某单位的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了80个面包,以x(单位:个,)表示面包的需求量,T(单位:元)表示利润.(1)求食堂面包需求量的平均数;(2)求T关于x的函数解析式;(3)根据直方图估计利润T不少于100元的概率.18.某公司为了提高职工的健身意识,鼓励大家加入健步运动,要求200名职工每天晚上9:30上传手机计步截图,对于步数超过10000的予以奖励.图1为甲乙两名职工在某一星期内的运动步数统计图,图2为根据这星期内某一天全体职工的运动步数做出的频率分布直方图.(1)在这一周内任选两天检查,求甲乙两人两天全部获奖的概率;(2)请根据频率分布直方图,求出该天运动步数不少于15000的人数,并估计全体职工在该天的平均步数;(3)如果当天甲的排名为第130名,乙的排名为第40名,试判断做出的是星期几的频率分布直方图.19.求过三点的圆的方程,并求这个圆的半径和圆心坐标.20.已知公差不为0的等差数列的前项和为,,且成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.21.已知定点,点A在圆上运动,M是线段AB上的一点,且,求出点M所满足的方程,并说明方程所表示的曲线是什么.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
计算出、,再将点的坐标代入回归直线方程,可求出的值.【题目详解】由表格中的数据可得,,由于回归直线过样本的中心点,则有,解得,故选:A.【题目点拨】本题考查回归直线方程中参数的计算,解题时要充分利用回归直线过样本的中心点这一结论,考查计算能力,属于基础题.2、C【解题分析】
利用诱导公式把化简成.【题目详解】【题目点拨】本题考查诱导公式的应用,即把任意角的三角函数转化成锐角三角函数,考查基本运算求解能力.3、D【解题分析】由已知(a4+a7)2=9,所以a4+a7=±3,从而a1+a10=±3.所以S10=×10=±15.故选D.4、C【解题分析】
根据图象求出A,ω和φ的值,得到g(x)的解析式,然后将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象.【题目详解】由图象知A=1,(),即函数的周期T=π,则π,得ω=2,即g(x)=sin(2x+φ),由五点对应法得2φ=2kπ+π,k,得φ,则g(x)=sin(2x),将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象,即f(x)=sin[2(x)]=sin(2x)=,故选C.【题目点拨】本题主要考查三角函数解析式的求解,结合图象求出A,ω和φ的值以及利用三角函数的图象变换关系是解决本题的关键.5、C【解题分析】
由实数a,b,c成等比数列,得b2【题目详解】由实数a,b,c成等比数列,得b2所以b=±2.故选C.【题目点拨】本题主要考查了等比数列的基本性质,属于基础题.6、C【解题分析】
利用几何概型的定义区间长度之比可得答案,在区间的占比为,所以概率为。【题目详解】因为的长度为3,在区间的长度为9,所以概率为。故选:C【题目点拨】此题考查几何概型,概率即是在部分占总体的占比,属于简单题目。7、C【解题分析】
利用线面垂直、线面平行、面面垂直的性质定理分别对选项分析选择.【题目详解】对于A,若,,则或者;故A错误;对于B,若,则可能在内或者平行于;故B错误;对于C,若,,,过分作平面于,作平面,则根据线面平行的性质定理得,,∴,根据线面平行的判定定理,可得,又,,根据线面平行的性质定理可得,又,∴;故C正确;对于D.若,,则与可能垂直,如墙角;故D错误;故选:C.【题目点拨】本题考查了面面垂直、线面平行、线面垂直的性质定理及应用,涉及空间线线平行的传递性,考查了空间想象能力,熟练运用定理是关键.8、A【解题分析】
利用线面垂直的判定,线面平行的判定,线线的位置关系及面面平行的性质逐一判断即可.【题目详解】对于A,垂直于同一个平面的两条直线互相平行,故A正确.对于B,若,,则或,故B错误.对于C,若,,则位置关系为平行或相交或异面,故C错误.对于D,若,,,则位置关系为平行或异面,故D错误.故选:A【题目点拨】本题主要考查了线面垂直的性质,线面平行的判定和面面平行的性质,属于简单题.9、D【解题分析】
根据随机抽样的定义进行判断即可.【题目详解】第行第列开始的数为(不合适),,(不合适),,,,(不合适),(不合适),,(重复不合适),则满足条件的6个编号为,,,,,则第6个编号为本题正确选项:【题目点拨】本题主要考查随机抽样的应用,根据定义选择满足条件的数据是解决本题的关键.10、A【解题分析】
所求直线的斜率与直线x-2y+2=0的斜率互为相反数,且在x=1处有公共点,求解即可。【题目详解】直线x-2y+2=0与直线x=1的交点为P1,3因为直线x-2y+2=0的斜率为12,所以所求直线的斜率为-故所求直线方程为y-32=-故答案为A.【题目点拨】本题考查了直线的斜率,直线的方程,直线关于直线的对称问题,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、②③④【解题分析】
首先化简函数解析式,逐一分析选项,得到答案.【题目详解】①当时,函数的周期为,,或,所以①不正确;②时,,所以是增函数,②正确;③函数还可以化简为,所以与关于轴对称,正确;④,当时,,,④正确故选②③④【题目点拨】本题考查了三角函数的化简和三角函数的性质,属于中档题型.12、【解题分析】
利用等差数列的通项公式、前n项和公式直接求解.【题目详解】∵等差数列{an}中,a3+a10=25,∴其前12项之和S126(a3+a10)=6×25=1.故答案为:1.【题目点拨】本题考查等差数列的前n项和的公式,考查等差数列的性质的应用,考查运算求解能力,是基础题.13、【解题分析】
由题意利用韦达定理求得、的值,再利用两角差的正切公式,求得要求式子的值.【题目详解】解:、是方程的两根,,,,或,,则,故答案为:.【题目点拨】本题主要考查韦达定理,两角差的正切公式,属于基础题.14、【解题分析】
实数满足表示点在直线上,可以看作点到原点的距离,最小值是原点到直线的距离,根据点到直线的距离公式求解.【题目详解】因为实数满足=1所以表示直线上点到原点的距离,故的最小值为原点到直线的距离,即,故的最小值为1.【题目点拨】本题考查点到点,点到直线的距离公式,此题的关键在于的最小值所表示的几何意义的识别.15、【解题分析】试题分析:考点:两角和的正切公式点评:本题主要考查两角和的正切公式变形的运用,抓住和角是特殊角,是解题的关键.16、-3【解题分析】
试题分析:∵,∴,又∵,∴,∴,∴考点:本题考查了向量的坐标运算点评:熟练运用向量的坐标运算是解决此类问题的关键,属基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)84;(2);(3)【解题分析】
(1)每个小矩形的面积乘以该组中间值,所得数据求和就是平均数;(2)根据需求量分段表示函数关系;(3)根据(1)利润T不少于100元时,即,即,求出其频率,即可估计概率.【题目详解】(1)估计食堂面包需求量的平均数为:(2)解:由题意,当时,利润,当时,利润,即T关于x的函数解析式(3)解:由题意,设利润T不少于100元为事件A,由(1)知,利润T不少于100元时,即,即,由直方图可知,当时,所求概率为【题目点拨】此题考查频率分布直方图,根据频率分布直方图求平均数,计算频率,以及建立函数模型解决实际问题,综合性比较强.18、(1),(2)80人,13.25千步,(3)星期二【解题分析】
(1)根据统计图统计出甲乙两人合格的天数,再计算全部获奖概率;(2)根据频率分布直方图求出人数及平均步数;(3)根据频率分布直方图计算出甲乙的步数从而判断出星期几.【题目详解】(1)由统计图可知甲乙两人步数超过10000的有星期一、星期二、星期五、星期天设事件A为甲乙两人两天全部获奖,则(2)由图可知,解得所以该天运动步数不少于15000的人数为(人)全体职工在该天的平均步数为:(千步)(3)因为假设甲的步数为千步,乙的步数为千步由频率分布直方图可得:,解得,解得所以可得出的是星期二的频率分布直方图.【题目点拨】本题考查利用频率分布直方图来求平均数和概率,要注意计算的准确性,较简单.19、(x﹣4)2+(y+3)2=21,圆的半径为【解题分析】
设出圆的一般方程,把代入所设,得到关于的方程组,求解,即可求得圆的一般方程,化为标准方程,进一步求得圆心坐标与半径.【题目详解】设圆的方程为:x2+y2+Dx+Ey+F=0,则,解得D=﹣4,E=3,F=0,∴圆的方程为x2+y2﹣8x+6y=0,化为(x﹣4)2+(y+3)2=21,可得:圆心是(4,﹣3)、半径r=1.【题目点拨】本题主要考查圆的方程和性质,属于简单题.求圆的方程常见思路与方法有:①直接设出动点坐标,根据题意列出关于的方程即可;②根据几何意义直接找到圆心坐标和半径,写出方程;③待定系数法,可以根据题意设出圆的标准方程或一般式方程,再根据所给条件求出参数即可.20、(1)(2)【解题分析】
试题分析:(1)由已知条件,利用等差数列的前n项和公式和通项公式及等比数列的性质列出方程组,求出等差数列的首项和公差,由此能求出数列{an}的通项公式;(2)由题意推导出bn=22n+1+1,由此利用分组求和法能求出数列{bn}的前n项和.详解:(Ⅰ)设等差数列的公差为.因为,所以.①因为成等比数列,所以.②由①,②可得:.所以.(Ⅱ)由题意,设数列的前项和为,,,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024货物运输合同新版范文
- 2024货车租赁合同模板
- 2024年工程项目模板劳务承包协议
- 河南省郑州市2024−2025学年高二上学期10月月考数学试卷含答案
- 2024年安徽省农民工离职手续合同
- 2024年光缆敷设工程合同
- 2024年两人货车合作合同
- 网络新闻采集与发布合同
- 2024年养殖联盟:鸡蛋采购与供应协议
- 物联网智能终端设备研发与销售合同
- 城乡生活污水处理环境影响与风险评估
- 厂房租赁合同范本版(18篇)
- DB22T 5165-2024 建设工程消防验收现场评定标准
- 能源中国学习通超星期末考试答案章节答案2024年
- 2024广东省云浮市郁南县财政局工程造价类专业人员招聘4人高频难、易错点500题模拟试题附带答案详解
- 人工智能时代高等院校教师信息素养提升研究
- 军队文职考试《公共科目》试题及答案指导(2024年)
- 商家联盟合作方案
- 广东省广州市2021年中考英语真题(含答案)
- 《应用统计学》(第4版)-自测试卷及答案A卷
- 公司法课件(新员工)
评论
0/150
提交评论