2024届浙江省杭州市八校联盟高一数学第二学期期末经典模拟试题含解析_第1页
2024届浙江省杭州市八校联盟高一数学第二学期期末经典模拟试题含解析_第2页
2024届浙江省杭州市八校联盟高一数学第二学期期末经典模拟试题含解析_第3页
2024届浙江省杭州市八校联盟高一数学第二学期期末经典模拟试题含解析_第4页
2024届浙江省杭州市八校联盟高一数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省杭州市八校联盟高一数学第二学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列的前项和为,首项,若,则当取最大值时,的值为()A. B. C. D.2.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为()A.50% B.30% C.10% D.60%3.在中,,且面积为1,则下列结论不正确的是()A. B. C. D.4.若为圆的弦的中点,则直线的方程是()A. B.C. D.5.圆心为的圆与圆相外切,则圆的方程为()A. B.C. D.6.已知甲,乙,丙三人去参加某公司面试,他们被该公司录取的概率分别是,,,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为()A. B. C. D.7.已知=(2,3),=(3,t),=1,则=A.-3 B.-2C.2 D.38.已知数列,满足,若,则()A. B. C. D.9.某工厂对一批新产品的长度(单位:)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为()A.20,22.5 B.22.5,25 C.22.5,22.75 D.22.75,22.7510.已知三棱锥,若平面,,,,则三棱锥外接球的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为_____________.12.设,且,则的取值范围是______.13.设集合,它共有个二元子集,如、、等等.记这个二元子集为、、、、,设,定义,则_____.(结果用数字作答)14.函数y=sin2x+2sin2x的最小正周期T为_______.15.已知向量a=(2,-4),b=(-3,-4),则向量a与16.已知,则______;的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的单调递增区间;(2)求在区间上的最值.18.某科研小组对冬季昼夜温差大小与某反季节作物种子发芽多少之间的关系进行分析,分别记录了每天昼夜温差和每100颗种子的发芽数,其中5天的数据如下,该小组的研究方案是:先从这5组数据中选取3组求线性回归方程,再用方程对其余的2组数据进行检验.日期第1天第2天第3天第4天第5天温度(℃)101113128发芽数(颗)2326322616(1)求余下的2组数据恰好是不相邻2天数据的概率;(2)若选取的是第2、3、4天的数据,求关于的线性回归方程;(3)若由线性回归方程得到的估计数据与2组检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,请问(2)中所得的线性回归方程是否可靠?(参考公式;线性回归方程中系数计算公式:,,其中、表示样本的平均值)19.已知数列的前n项和为,且,.(1)求数列的通项公式;(2)若等差数列满足,且,,成等比数列,求c.20.已知函数()的一段图象如图所示.(1)求函数的解析式;(2)若,求函数的值域.21.已知,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

设等差数列的公差为,,由,可得,令求出正整数的最大值,即可得出取得最大值时对应的的值.【题目详解】设等差数列的公差为,由,得,可得,令,,可得,解得.因此,最大.故选:B.【题目点拨】本题考查等差数列前项和的最值,一般利用二次函数的基本性质求解,也可由数列项的符号求出正整数的最大值来求解,考查计算能力,属于中等题.2、A【解题分析】

甲不输的概率等于甲获胜或者平局的概率相加,计算得到答案.【题目详解】甲不输的概率等于甲获胜或者平局的概率相加甲、乙下成平局的概率为:故答案选A【题目点拨】本题考查了互斥事件的概率,意在考查学生对于概率的理解.3、C【解题分析】

根据三角形面积公式列式,求得,再根据基本不等式判断出C选项错误.【题目详解】根据三角形面积为得,三个式子相乘,得到,由于,所以.所以,故C选项错误.所以本小题选C.【题目点拨】本小题主要考查三角形面积公式,考查基本不等式的运用,属于中档题.4、D【解题分析】

圆的圆心为O,求出圆心坐标,利用垂径定理,可以得到,求出直线的斜率,利用两直线垂直斜率关系可以求出直线的斜率,利用点斜式写出直线方程,最后化为一般式方程.【题目详解】设圆的圆心为O,坐标为(1,0),根据圆的垂径定理可知:,因为,所以,因此直线的方程为,故本题选D.【题目点拨】本题考查了圆的垂径定理、两直线垂直斜率的关系,考查了斜率公式.5、A【解题分析】

求出圆的圆心坐标和半径,利用两圆相外切关系,可以求出圆的半径,求出圆的标准方程,最后化为一般式方程.【题目详解】设的圆心为A,半径为r,圆C的半径为R,,所以圆心A坐标为,半径r为3,圆心距为,因为两圆相外切,所以有,故圆的标准方程为:,故本题选A.【题目点拨】本题考查了圆与圆的相外切的性质,考查了已知圆的方程求圆心坐标和半径,考查了数学运算能力.6、B【解题分析】

由题意,可先求得三个人都没有被录取的概率,接下来求至少有一人被录取的概率,利用对立事件的概率公式,求得结果.【题目详解】甲、乙、丙三人都没有被录取的概率为,所以三人中至少有一人被录取的概率为,故选B.【题目点拨】该题考查的是有关概率的求解问题,关键是掌握对立事件的概率加法公式,求得结果.7、C【解题分析】

根据向量三角形法则求出t,再求出向量的数量积.【题目详解】由,,得,则,.故选C.【题目点拨】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.8、C【解题分析】

利用递推公式计算出数列的前几项,找出数列的周期,然后利用周期性求出的值.【题目详解】,且,,,,所以,,则数列是以为周期的周期数列,.故选:C.【题目点拨】本题考查利用数列递推公式求数列中的项,推导出数列的周期是解本题的关键,考查分析问题和解决问题的能力,属于中等题.9、C【解题分析】

根据平均数的定义即可求出.根据频率分布直方图中,中位数的左右两边频率相等,列出等式,求出中位数即可.【题目详解】:根据频率分布直方图,得平均数为1(12.1×0.02+17.1×0.04+22.1×0.08+27.1×0.03+32.1×0.03)=22.71,∵0.02×1+0.04×1=0.3<0.1,0.3+0.08×1=0.7>0.1;∴中位数应在20~21内,设中位数为x,则0.3+(x﹣20)×0.08=0.1,解得x=22.1;∴这批产品的中位数是22.1.故选C.【题目点拨】本题考查了利用频率分布直方图求数据的中位数平均数的应用问题,是基础题目.10、B【解题分析】

根据题意画出三棱锥的图形,将其放入一个长方体中,容易知道三棱锥的外接球半径,利用球的表面积公式求解即可.【题目详解】根据题意画出三棱锥如图所示,把三棱锥放入一个长方体中,三棱锥的外接球即这个长方体的外接球,长方体的外接球半径等于体对角线的一半,所以三棱锥的外接球半径,三棱锥的外接球的表面积.故选:B【题目点拨】本题主要考查三棱锥的外接球问题,对于三棱锥三条棱有两两垂直的情况,可以考虑将其放入一个长方体中求解外接球半径,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】函数的定义域为故答案为12、【解题分析】

通过可求得x的取值范围,接着利用反正弦函数的定义可得的取值范围.【题目详解】,,即.由反正弦函数的定义可得,即的取值范围为.故答案为:.【题目点拨】本题主要考查余弦函数的定义域和值域,反正弦函数的定义,属于基础题.13、1835028【解题分析】

分别分析中二元子集中较大元素分别为、、、时,对应的二元子集中较小的元素,再利用题中的定义结合数列求和思想求出结果.【题目详解】当二元子集较大的数为,则较小的数为;当二元子集较大的数为,则较小的数为、;当二元子集较大的数为,则较小的数为、、;当二元子集较大的数为,则较小的数为、、、、.由题意可得,令,得,上式下式得,化简得,因此,,故答案为:.【题目点拨】本题考查新定义,同时也考查了数列求和,解题的关键就是找出相应的规律,列出代数式进行计算,考查运算求解能力,属于难题.14、【解题分析】考点:此题主要考查三角函数的概念、化简、性质,考查运算能力.15、5【解题分析】

先求出a⋅b,再求【题目详解】由题得a所以向量a与b夹角的余弦值为cosα=故答案为5【题目点拨】(1)本题主要考查向量的夹角的计算,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)求两个向量的夹角一般有两种方法,方法一:cos<a,b>=a·bab,方法二:设a=(x1,y16、50【解题分析】

由分段函数的表达式,代入计算即可;先求出的表达式,结合分段函数的性质,求最小值即可.【题目详解】由,可得,,所以;由的表达式,可得,当时,,此时,当时,,由二次函数的性质可知,,综上,的最小值为0.故答案为:5;0.【题目点拨】本题考查求函数值,考查分段函数的性质,考查函数最值的计算,考查学生的计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为,最小值为.【解题分析】

(1)利用两角和的正弦公式以及二倍角的余弦公式、两角和的余弦公式将函数的解析式化简为,然后解不等式可得出函数的单调递增区间;(2)由,可计算出,然后由余弦函数的基本性质可求出函数在区间上的最大值和最小值.【题目详解】(1),解不等式,得,因此,函数的单调递增区间为;(2)当时,.当时,函数取得最大值;当时,函数取得最小值.【题目点拨】本题考查三角函数单调区间以及在定区间上最值的求解,解题时要利用三角恒等变换思想将三角函数的解析式化简,并借助正弦函数或余弦函数的基本性质进行求解,考查分析问题和解决问题的能力,属于中等题.18、(1);(2);(3)线性回归方程是可靠的.【解题分析】

(1)用列举法求出基本事件数,计算所求的概率值;(2)由已知数据求得与,则线性回归方程可求;(3)利用回归方程计算与8时的值,再由已知数据作差取绝对值,与1比较大小得结论.【题目详解】解:(1)设“余下的2组数据恰好是不相邻2天数据为事件”,从5组数据中选取3组数据,余下的2组数据共10种情况:,,,,,,,,,.其中事件的有6种,;(2)由数据求得,,且,.代入公式得:,.线性回归方程为:;(3)当时,,,当时,,.故得到的线性回归方程是可靠的.【题目点拨】本题考查了线性回归方程的求法与应用问题,考查古典概型的概率计算问题,属于中档题.19、(1);(2).【解题分析】

(1)根据题意,数列为1为首项,4为公差的等差数列,根据等差数列通项公式计算即可;(2)由(1)可求数列的前n项和为,根据,,成等差数列及,,成等比数列,利用等差、等比数列性质可求出c.【题目详解】(1),,,故数列是以1为首项,4为公差的等差数列..(2)由(1)知,,,,,,法1:,,成等比数列,,即,整理得:,或.①当时,,所以(定值),满足为等差数列,②当时,,,,,不满足,故此时数列不为等差数列(舍去).法2:因为为等差数列,所以,即,解得或.①当时,满足,,成等比数列,②当时,,,,不满足,,成等比数列(舍去),综上可得.【题目点拨】本题考查等差数列的通项及求和,等差数列、等比数列性质的应用,解决此类问题通常借助方程思想列方程(组)求解,属于中等题.20、(1);(2)【解题分析】

(1)由函数的一段图象求得、、和的值即可;(2)由,求得的取值范围,再利用正弦函数的性质求得的最大和最小值即可.【题目详解】解:(1)由函数的一段图象知,,,,解得,又时,,,,解得,;,函数的解析式为;(2)当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论