河南省鹤壁市2024届数学高一第二学期期末统考试题含解析_第1页
河南省鹤壁市2024届数学高一第二学期期末统考试题含解析_第2页
河南省鹤壁市2024届数学高一第二学期期末统考试题含解析_第3页
河南省鹤壁市2024届数学高一第二学期期末统考试题含解析_第4页
河南省鹤壁市2024届数学高一第二学期期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省鹤壁市2024届数学高一第二学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是两条不同的直线,是两个不同的平面,则下列命题正确的是A.,则B.,则C.,则D.,则2.一个正四棱锥的底面边长为2,高为,则该正四棱锥的全面积为A.8 B.12 C.16 D.203.若是2与8的等比中项,则等于()A. B. C. D.324.△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-,则=A.6 B.5 C.4 D.35.某产品的广告费用(单位:万元)与销售额(单位:万元)的统计数据如下表:根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售为()A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元6.记为等差数列的前n项和.若,,则等差数列的公差为()A.1 B.2 C.4 D.87.已知变量x,y满足约束条件x+y-2≥0,y≤2,x-y≤0,则A.2 B.3 C.4 D.68.若将函数的图象向左平移个单位长度,平移后的图象关于点对称,则函数在上的最小值是A. B. C. D.9.已知向量,,则与的夹角为()A. B. C. D.10.下列各角中与角终边相同的角是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.涡阳一中某班对第二次质量检测成绩进行分析,利用随机数表法抽取个样本时,先将个同学按、、、、进行编号,然后从随机数表第行第列的数开始向右读(注:如表为随机数表的第行和第行),则选出的第个个体是______.12.函数的反函数为__________.13.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.14.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.15.已知向量,,若,则__________.16.已知,则______;的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)(1)A类工人中和B类工人各抽查多少工人?(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:表1:生产能力分组人数48x53表2:生产能力分组人数6y3618①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图18.己知数列的前项和,求数列的通项.19.已知圆C:(x-1)2(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程20.如图,在三棱柱中,各个侧面均是边长为的正方形,为线段的中点.(1)求证:直线平面;(2)求直线与平面所成角的余弦值;(3)设为线段上任意一点,在内的平面区域(包括边界)是否存在点,使,并说明理由.21.的内角的对边分别为,已知.(1)求角的大小;(2)若为锐角三角形,且,求面积的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

根据空间中直线与平面的位置关系的相关定理依次判断各个选项即可.【题目详解】两平行平面内的直线的位置关系为:平行或异面,可知错误;且,此时或,可知错误;,,,此时或,可知错误;两平行线中一条垂直于一个平面,则另一条必垂直于该平面,正确.本题正确选项:【题目点拨】本题考查空间中直线与平面、平面与平面位置关系的判定,考查学生对于定理的掌握程度,属于基础题.2、B【解题分析】

先求侧面三角形的斜高,再求该正四棱锥的全面积.【题目详解】由题得侧面三角形的斜高为,所以该四棱锥的全面积为.故选B【题目点拨】本题主要考查几何体的边长的计算和全面积的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.3、B【解题分析】

利用等比中项性质列出等式,解出即可。【题目详解】由题意知,,∴.故选B【题目点拨】本题考查等比中项,属于基础题。4、A【解题分析】

利用余弦定理推论得出a,b,c关系,在结合正弦定理边角互换列出方程,解出结果.【题目详解】详解:由已知及正弦定理可得,由余弦定理推论可得,故选A.【题目点拨】本题考查正弦定理及余弦定理推论的应用.5、B【解题分析】

试题分析:,回归直线必过点,即.将其代入可得解得,所以回归方程为.当时,所以预报广告费用为6万元时销售额为65.5万元考点:回归方程6、B【解题分析】

利用等差数列的前n项和公式、通项公式列出方程组,能求出等差数列{an}的公差.【题目详解】∵为等差数列的前n项和,,,∴,解得d=2,a1=5,∴等差数列的公差为2.故选:B.【题目点拨】本题考查等差数列的公差,此类问题根据题意设公差和首项为d、a1,列出方程组解出即可,属于基础题.7、D【解题分析】

试题分析:把函数转化为表示斜率为截距为平行直线系,当截距最大时,最大,由题意知当直线过和两条直线交点时考点:线性规划的应用.【题目详解】请在此输入详解!8、C【解题分析】

由题意得,故得平移后的解析式为,根据所的图象关于点对称可求得,从而可得,进而可得所求最小值.【题目详解】由题意得,将函数的图象向左平移个单位长度所得图象对应的解析式为,因为平移后的图象关于点对称,所以,故,又,所以.所以,由得,所以当或,即或时,函数取得最小值,且最小值为.故选C.【题目点拨】本题考查三角函数的性质的综合应用,解题的关键是求出参数的值,容易出现的错误是函数图象平移时弄错平移的方向和平移量,此时需要注意在水平方向上的平移或伸缩只是对变量而言的.9、D【解题分析】

利用夹角公式计算出两个向量夹角的余弦值,进而求得两个向量的夹角.【题目详解】设两个向量的夹角为,则,故.故选:D.【题目点拨】本小题主要考查两个向量夹角的计算,考查向量数量积和模的坐标表示,属于基础题.10、B【解题分析】

根据终边相同角的概念,即可判断出结果.【题目详解】因为,所以与是终边相同的角.故选B【题目点拨】本题主要考查终边相同的角,熟记有关概念即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】

根据随机数法列出前个个体的编号,即可得出答案.【题目详解】由随机数法可知,前个个体的编号依次为、、、、、、,因此,第个个体是,故答案为.【题目点拨】本题考查随机数法读取样本个体编号,读取时要把握两个原则:(1)看样本编号最大数为几位数,读取时就几个数连着一起取;(2)不在编号范围内的号码要去掉,重复的只能取第一次.12、【解题分析】

由得,即,把与互换即可得出【题目详解】由得所以把与互换,可得故答案为:【题目点拨】本题考查的是反函数的求法,较简单.13、160【解题分析】

∵某个年级共有980人,要从中抽取280人,∴抽取比例为280980∴此样本中男生人数为27故答案为160.考点:本题考查了分层抽样的应用点评:掌握分层抽样的概念是解决此类问题的关键,属基础题14、【解题分析】

分较长的两条棱所在直线相交,和较长的两条棱所在直线异面两种情况讨论,结合三棱锥的结构特征,即可求出结果.【题目详解】当较长的两条棱所在直线相交时,如图所示:不妨设,,,所以较长的两条棱所在直线所成角为,由勾股定理可得:,所以,所以此时较长的两条棱所在直线所成角的余弦值为;当较长的两条棱所在直线异面时,不妨设,,则,取CD的中点为O,连接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能构成三角形。所以此情况不存在。故答案为:.【题目点拨】本题主要考查异面直线所成的角,熟记异面直线所成角的概念,以及三棱锥的结构特征即可,属于常考题型.15、1【解题分析】由,得.即.解得.16、50【解题分析】

由分段函数的表达式,代入计算即可;先求出的表达式,结合分段函数的性质,求最小值即可.【题目详解】由,可得,,所以;由的表达式,可得,当时,,此时,当时,,由二次函数的性质可知,,综上,的最小值为0.故答案为:5;0.【题目点拨】本题考查求函数值,考查分段函数的性质,考查函数最值的计算,考查学生的计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)25,75(2)①5,15,直方图见解析,B类②123,133.8,131.1【解题分析】

(1)先计算抽样比为,进而可得各层抽取人数(2)①类、类工人人数之比为,按此比例确定两类工人需抽取的人数,再算出和即可.画出频率分布直方图,从直方图可以判断:类工人中个体间的差异程度更小②取每个小矩形的横坐标的中点乘以对应矩形的面积相加即得平均数.【题目详解】(1)由已知可得:抽样比,故类工人中应抽取:人,类工人中应抽取:人,(2)①由题意知,得,,得.满足条件的频率分布直方图如下所示:从直方图可以判断:类工人中个体间的差异程度更小.②,类工人生产能力的平均数,类工人生产能力的平均数以及全工厂工人生产能力的平均数的估计值分别为123,133.8和131.1【题目点拨】本题考查等可能事件、相互独立事件的概率、频率分布直方图的理解以及利用频率分布直方图求平均数等知识、考查运算能力.18、【解题分析】

根据通项前项和的关系求解即可.【题目详解】解:当时,.当时,.当时,上式也成立.【题目点拨】本题主要考查了根据前项公式求解通项公式的方法.属于基础题.19、(1);(2)【解题分析】(1)已知圆C:(x-1)2(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=-120、(1)见解析(2)(3)存在点,使,详见解析【解题分析】

(1)设与的交点为,证明进而证明直线平面.(2)先证明直线与平面所成角的为,再利用长度关系计算.(3)过点作,证明平面,即,所以存在.【题目详解】(1)设与的交点为,显然为中点,又点为线段的中点,所以,平面,平面,平面.(2)平面,平面,,,平面,平面,平面,点在平面上的投影为点,直线与平面所成角的为,,,,.(3)过点作,又因为平面,平面,所以,平面,平面,平面,,所以存在点,使.【题目点拨】本题考查了立体几何线面平行,线面夹角,动点问题,将线线垂直转化为线面垂直是解题的关键.21、(1)(2)【解题分析】

(1)利用正弦定理边角互化的思想以及两角和的正弦公式、三角形的内角和定理以及诱导公式求出的值,结合角的范围求出角的值;(2)由三角形的面积公式得,由正弦定理结合内角和定理得出,利用为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论