浙江诸暨中学2024届数学高一第二学期期末监测试题含解析_第1页
浙江诸暨中学2024届数学高一第二学期期末监测试题含解析_第2页
浙江诸暨中学2024届数学高一第二学期期末监测试题含解析_第3页
浙江诸暨中学2024届数学高一第二学期期末监测试题含解析_第4页
浙江诸暨中学2024届数学高一第二学期期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江诸暨中学2024届数学高一第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个多面体的三视图如图所示.设在其直观图中,M为AB的中点,则几何体的体积为()A. B. C. D.2.已知向量,,若,则()A. B. C. D.3.下列结论正确的是()A.空间中不同三点确定一个平面B.空间中两两相交的三条直线确定一个平面C.一条直线和一个点能确定一个平面D.梯形一定是平面图形4.已知为第二象限角,则所在的象限是()A.第一或第三象限 B.第一象限C.第二象限 D.第二或第三象限5.直线,,的斜率分别为,,,如图所示,则()A. B.C. D.6.若则一定有()A. B. C. D.7.计算:A. B. C. D.8.如图是函数一个周期的图象,则的值等于A. B. C. D.9.某数学竞赛小组有3名男同学和2名女同学,现从这5名同学中随机选出2人参加数学竞赛(每人被选到的可能性相同).则选出的2人中恰有1名男同学和1名女同学的概率为()A. B. C. D.10.sin300°的值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正方形,向正方形内任投一点,则的面积大于正方形面积四分之一的概率是______.12.已知,,是与的等比中项,则最小值为_________.13.在中,给出如下命题:①是所在平面内一定点,且满足,则是的垂心;②是所在平面内一定点,动点满足,,则动点一定过的重心;③是内一定点,且,则;④若且,则为等边三角形,其中正确的命题为_____(将所有正确命题的序号都填上)14.若数列{an}满足a1=2,a15.在数列中,,,则________.16.若,则函数的最小值是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,(1)求的解析式,并求出的最大值;(2)若,求的最小值和最大值,并指出取得最值时的值.18.在等差数列中,(Ⅰ)求通项;(Ⅱ)求此数列前30项的绝对值的和.19.已知(1)求的值;(2)求的值.20.如图,矩形中,平面,,为上的点,且平面,.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.21.某机构通过对某企业今年的生产经营情况的调查,得到每月利润(单位:万元)与相应月份数的部分数据如表:14712229244241196(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述与的变化关系,并说明理由,,,;(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

利用棱柱的体积减去两个棱锥的体积,求解即可.【题目详解】由题意可知几何体C−MEF的体积:VADF−BCE−VF−AMCD−VE−MBC=.故选:D.【题目点拨】本题考查简单空间图形的三视图及体积计算,根据三视图求得几何体的棱长及关系,利用几何体体积公式即可求解,考查运算能力和空间想象能力,属于基础题.2、D【解题分析】

由共线向量的坐标表示可得出关于实数的方程,解出即可.【题目详解】向量,,且,,解得.故选:D.【题目点拨】本题考查利用共线向量的坐标表示求参数的值,解题时要熟悉共线向量坐标之间的关系,考查计算能力,属于基础题.3、D【解题分析】空间中不共线三点确定一个平面,空间中两两相交的三条直线确定一个或三个平面,一条直线和一个直线外一点能确定一个平面,梯形有两对边相互平行,所以梯形一定是平面图形,因此选D.4、A【解题分析】

用不等式表示第二象限角,再利用不等式的性质求出满足的不等式,从而确定角的终边在的象限.【题目详解】由已知为第二象限角,则则当时,此时在第一象限.当时,,此时在第三象限.故选:A【题目点拨】本题考查象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限.5、A【解题分析】

根据题意可得出直线,,的倾斜角满足,由倾斜角与斜率的关系得出结果.【题目详解】解:设三条直线的倾斜角为,根据三条直线的图形可得,因为,当时,,当时,单调递增,且,故,即故选A.【题目点拨】本题考查了直线的倾斜角与斜率的关系,解题的关键是熟悉正切函数的单调性.6、D【解题分析】本题主要考查不等关系.已知,所以,所以,故.故选7、A【解题分析】

根据正弦余弦的二倍角公式化简求解.【题目详解】,故选A.【题目点拨】本题考查三角函数的恒等变化,关键在于寻找题目与公式的联系.8、A【解题分析】

利用图象得到振幅,周期,所以,再由图象关于成中心对称,把原式等价于求的值.【题目详解】由图象得:振幅,周期,所以,所以,因为图象关于成中心对称,所以,,所以原式,故选A.【题目点拨】本题考查三角函数的周期性、对称性等性质,如果算出每个值再相加,会浪费较多时间,且容易出错,采用对称性求解,能使问题的求解过程变得更简洁.9、A【解题分析】

把5名学生编号,然后写出任取2人的所有可能,按要求计数后可得概率.【题目详解】3名男生编号为,两名女生编号为,任选2人的所有情形为:,,共10种,其中恰有1名男生1名女生的有共6种,所以所求概率为.【题目点拨】本题考查古典概型,方法是列举法.10、B【解题分析】

利用诱导公式化简,再求出值为.【题目详解】因为,故选B.【题目点拨】本题考查诱导公式的应用,即终边相同角的三角函数值相等及.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

向正方形内任投一点,所有等可能基本事件构成正方形区域,当的面积大于正方形面积四分之一的所有基本事件构成区域矩形区域,由面积比可得概率值.【题目详解】如图边长为1的正方形中,分别是的中点,当点在线段上时,的面积为,所以的面积大于正方形面积四分之一,此时点应在矩形内,由几何概型得:,故填.【题目点拨】本题考查几何概型,利用面积比求概率值,考查对几何概型概率计算.12、1【解题分析】

根据等比中项定义得出的关系,然后用“1”的代换转化为可用基本不等式求最小值.【题目详解】由题意,所以,所以,当且仅当,即时等号成立.所以最小值为1.故答案为:1.【题目点拨】本题考查等比中项的定义,考查用基本不等式求最值.解题关键是用“1”的代换找到定值,从而可用基本不等式求最值.13、①②④.【解题分析】

①:运用已知的式子进行合理的变形,可以得到,进而得到,再次运用等式同样可以得到,,这样可以证明出是的垂心;②:运用平面向量的减法的运算法则、加法的几何意义,结合平面向量共线定理,可以证明本命题是真命题;③:运用平面向量的加法的几何意义以及平面向量共线定理,结合面积公式,可证明出本结论是错误的;④:运用平面向量的加法几何意义和平面向量的数量积的定义,可以证明出本结论是正确的.【题目详解】①:,同理可得:,,所以本命题是真命题;②:,设的中点为,所以有,因此动点一定过的重心,故本命题是真命题;③:由,可得设的中点为,,,故本命题是假命题;④:由可知角的平分线垂直于底边,故是等腰三角形,由可知:,所以是等边三角形,故本命题是真命题,因此正确的命题为①②④.【题目点拨】本题考查了平面向量的加法的几何意义和平面向量数量积的运算,考查了数形结合思想.14、2×【解题分析】

判断数列是等比数列,然后求出通项公式.【题目详解】数列{an}中,a可得数列是等比数列,等比为3,an故答案为:2×3【题目点拨】本题考查等比数列的判断以及通项公式的求法,考查计算能力.15、【解题分析】

由递推公式可以求出,可以归纳出数列的周期,从而可得到答案.【题目详解】由,,.,可推测数列是以3为周期的周期数列.所以。故答案为:【题目点拨】本题考查数量的递推公式同时考查数列的周期性,属于中档题.16、【解题分析】

利用基本不等式可求得函数的最小值.【题目详解】,由基本不等式得,当且仅当时,等号成立,因此,当时,函数的最小值是.故答案为:.【题目点拨】本题考查利用基本不等式求函数的最值,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),最大值为.(2)时,最小值0.时,最大值.【解题分析】

(1)利用数量积公式、倍角公式和辅助角公式,化简,再利用三角函数的有界性,即可得答案;(2)利用整体法求出,再利用三角函数线,即可得答案.【题目详解】(1)∴,的最大值为.(2)由(1)得,∵,.,当时,即时,取最小值0.当,即时,取最大值.【题目点拨】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.18、(Ⅰ);(Ⅱ)765【解题分析】试题分析:(Ⅰ)由题意可得:进而得到数列通项公式为;(Ⅱ)由(Ⅰ)可得当时,,所以采用分组求和即可试题解析:(Ⅰ)∵即.∴.∴.(Ⅱ)由,则.∴=.考点:1.求数列通项公式;2.数列求和19、(1)20,(2)【解题分析】

(1)先利用同角三角函数的基本关系求得cos和tan的值,进而利用二倍角公式把sin2展开,把sin和cos的值代入即可.(2)先利用诱导公式使=tan(﹣),再利用正切的两角和公式展开后,把tanα的值代入即可求得答案.【题目详解】(1)由,得,所以=(2)∵,∴【题目点拨】本题主要考查了三角函数的化简求值的问题.要求学生能灵活运用三角函数的基本公式.20、(Ⅰ)见解析(Ⅱ)【解题分析】

(Ⅰ)先证明,再证明平面;(Ⅱ)由等积法可得即可求解.【题目详解】(Ⅰ)因为是中点,又因为平面,所以,由已知,所以是中点,所以,因为平面,平面,所以平面.(Ⅱ)因为平面,,所以平面,则,又因为平面,所以,则平面,由可得平面,因为,此时,,所以.【题目点拨】本题主要考查线面平行的判定及利用等积法求三棱锥的体积问题,属常规考题.21、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论