2024届山西省朔州市数学高一下期末联考试题含解析_第1页
2024届山西省朔州市数学高一下期末联考试题含解析_第2页
2024届山西省朔州市数学高一下期末联考试题含解析_第3页
2024届山西省朔州市数学高一下期末联考试题含解析_第4页
2024届山西省朔州市数学高一下期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省朔州市数学高一下期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若x+2y=4,则2x+4y的最小值是()A.4 B.8 C.2 D.42.设等差数列的前n项和为,首项,公差,,则最大时,n的值为()A.11 B.10 C.9 D.83.设集合,则()A. B. C. D.4.已知函数在上是x的减函数,则a的取值范围是()A. B. C. D.5.“”是“函数,有反函数”的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.即非充分又非必要条件6.等比数列{an}中,a3=12A.3×10-5C.128 D.3×2-57.各项均为实数的等比数列{an}前n项之和记为,若,,则等于A.150 B.-200 C.150或-200 D.-50或4008.在平面直角坐标系中,已知四边形是平行四边形,,,则()A. B. C. D.9.如图,有一辆汽车在一条水平的公路上向正西行驶,汽车在点测得公路北侧山顶的仰角为30°,汽车行驶后到达点测得山顶在北偏西30°方向上,且仰角为45°,则山的高度为()A. B. C. D.10.在中,内角所对的边分别是.已知,,,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.据监测,在海滨某城市附近的海面有一台风,台风中心位于城市的南偏东30°方向,距离城市的海面处,并以的速度向北偏西60°方向移动(如图示).如果台风侵袭范围为圆形区域,半径,台风移动的方向与速度不变,那么该城市受台风侵袭的时长为_______小时.12._________________.13.如图所示,已知,用表示.14.已知正方体的棱长为,点、分别为、的中点,则点到平面的距离为______.15.若函数,的图像关于对称,则________.16.在中,,点在边上,若,的面积为,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个顶点分别为,,,求:(1)边上的高所在直线的方程;(2)的外接圆的方程.18.某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在,,,,,(单位:克)中,经统计的频率分布直方图如图所示.(1)估计这组数据的平均数(同一组中的数据以这组数据所在区间中点的值作代表);(2)现按分层抽样从质量为[200,250),[250,300)的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;(3)某经销商来收购芒果,同一组中的数据以这组数据所在区间中点的值作代表,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出以下两种收购方案:方案①:所有芒果以9元/千克收购;方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.通过计算确定种植园选择哪种方案获利更多.参考数据:.19.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元.设公司一年内共生产该款手机x(x≥40)万部且并全部销售完,每万部的收入为R(x)万元,且R(x)=74000(1)写出年利润W(万元)关于年产量x(万部)的函数关系式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.20.已知圆经过点.(1)若直线与圆相切,求的值;(2)若圆与圆无公共点,求的取值范围.21.已知等比数列{an}的前n项和为Sn,S3=,S6=.(1)求数列{an}的通项公式an;(2)令bn=6n-61+log2an,求数列{bn}的前n项和Tn.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】试题分析:由,当且仅当时,即等号成立,故选B.考点:基本不等式.2、B【解题分析】

由等差数列前项和公式得出,结合数列为递减数列确定,从而得到最大时,的值为10.【题目详解】由题意可得等差数列的首项,公差则数列为递减数列即当时,最大故选B。【题目点拨】本题对等差数列前项和以及通项公式,关键是将转化为,结合数列的单调性确定最大时,的值为10.3、B【解题分析】

先求得集合,再结合集合的交集的概念及运算,即可求解.【题目详解】由题意,集合,所以.故选:B.【题目点拨】本题主要考查了集合的交集的运算,其中解答中正确求解集合B,结合集合的交集的概念与运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解题分析】

由复合函数单调性及函数的定义域得不等关系.【题目详解】由题意,解得.故选:C.【题目点拨】本题考查对数型复合函数的单调性,解题时要注意对数函数的定义域.5、A【解题分析】

函数,有反函数,则函数,上具有单调性,可得,即可判断出结论.【题目详解】函数,有反函数,则函数,上具有单调性,.是的真子集,“”是“函数,有反函数”的充分不必要条件.故选:A.【题目点拨】本题考查了二次函数的单调性、反函数、充分条件与必要条件的判定方法,考查推理能力与计算能力,同时考查函数与方程思想、数形结合思想.6、D【解题分析】

根据等比数列的通项公式得到公比,进而得到通项.【题目详解】设公比为q,则12q+12q=30,∴∴q=2或q=12,∴a10即3×29或故选D.【题目点拨】本题考查了等比数列通项公式的应用,属于简单题.7、A【解题分析】

根据等比数列的前n项和公式化简S10=10,S30=70,分别求得关于q的两个关系式,可求得公比q的10次方的值,再利用前n项和公式计算S40即可.【题目详解】因为{an}是等比数列,所以有,二式相除得,,整理得解得或(舍)所以有==所以=1.答案选A.【题目点拨】此题考查学生灵活运用等比数列的前n项和的公式化简求值,是一道综合题,有一定的运算技巧,需学生在练习中慢慢培养.8、D【解题分析】因为四边形是平行四边形,所以,所以,故选D.考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算.9、D【解题分析】

通过题意可知:,设山的高度,分别在中求出,最后在中,利用余弦定理,列出方程,解方程求出的值.【题目详解】由题意可知:.在中,.在中,.在中,由余弦定理可得:(舍去),故本题选D.【题目点拨】本题考查了余弦定理的应用,弄清题目中各个角的含义是解题的关键.10、B【解题分析】

由已知三边,利用余弦定理可得,结合,为锐角,可得,利用三角形内角和定理即可求的值.【题目详解】在中,,,,由余弦定理可得:,,故为锐角,可得,,故选.【题目点拨】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】

设台风移动M处的时间为th,则|PM|=20t,利用余弦定理求得AM,而该城市受台风侵袭等价于AM≤60,解此不等式可得.【题目详解】如图:设台风移动M处的时间为th,则|PM|=20t,依题意可得,在三角形APM中,由余弦定理可得:依题意该城市受台风侵袭等价于AM≤60,即AM2≤602,化简得:,所以该城市受台风侵袭的时间为6﹣1=1小时.故答案为:1.【题目点拨】本题考查了余弦定理的应用,考查了数学运算能力.12、3【解题分析】

分式上下为的二次多项式,故上下同除以进行分析.【题目详解】由题,,又,故.

故答案为:3.【题目点拨】本题考查了分式型多项式的极限问题,注意:当时,13、【解题分析】

可采用向量加法和减法公式的线性运算进行求解【题目详解】由,整理得【题目点拨】本题考查向量的线性运算,解题关键在于将所有向量通过向量的加法和减法公式转化成基底向量,属于中档题14、【解题分析】

作出图形,取的中点,连接,证明平面,可知点平面的距离等于点到平面的距离,然后利用等体积法计算出点到平面的距离,即为所求.【题目详解】如下图所示,取的中点,连接,在正方体中,且,、分别为、的中点,且,所以,四边形为平行四边形,且,又,,平面,平面,平面,则点平面的距离等于点到平面的距离,的面积为,在正方体中,平面,且平面,,易知三棱锥的体积为.的面积为.设点到平面的距离为,则,.故答案为:.【题目点拨】本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.15、【解题分析】

特殊值法:由的对称轴是,所以即可算出【题目详解】由题意得是三角函数所以【题目点拨】本题主要考查了三角函数的性质,需要记忆三角函数的基本性质:单调性、对称轴、周期、定义域、最值、对称中心等。根据对称性取特殊值法解决本题是关键。属于中等题。16、【解题分析】

由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【题目详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【题目点拨】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2x+y-2=0;(2)x2+y2+2x+2y-8=0【解题分析】

(1)根据高与底边所在直线垂直确定斜率,再由其经过点,从而由点斜式得到高所在直线方程,再写成一般式.(2)设出的外接圆的一般方程,将三个顶点坐标代入得到关于的方程组,从而求出外接圆的方程.【题目详解】(1)直线AB的斜率为,AB边上的高所在直线的斜率为-2,则AB边上的高所在直线的方程为y+2=-2(x-2),即2x+y-2=0(2)设△ABC的外接圆的方程为x2+y2+Dx+Ey+F=0由,解之可得故△ABC的外接圆的方程为x2+y2+2x+2y-8=0【题目点拨】主要考查了直线方程与圆的方程的求解,属于基础题.18、(1)255;(2);(3)选择方案②获利多【解题分析】

1)由频率分布直方图能求出这组数据的平均数.(2)利用分层抽样从这两个范围内抽取5个芒果,则质量在[200,250)内的芒果有2个,记为a1,a2,质量在[250,300)内的芒果有3个,记为b1,b2,b3,从抽取的5个芒果中抽取2个,利用列举法能求出这2个芒果都来自同一个质量区间的概率.(3)方案①收入22950元,方案②:低于250克的芒果的收入为8400元,不低于250克的芒果的收入为17400元,由此能求出选择方案②获利多.【题目详解】(1)由频率分布直方图知,各区间频率为0.07,0.15,0.20,0.30,0.25,0.03这组数据的平均数.(2)利用分层抽样从这两个范围内抽取5个芒果,则质量在[200,250)内的芒果有2个,记为,,质量在[250,300)内的芒果有3个,记为,,;从抽取的5个芒果中抽取2个共有10种不同情况:,,,,,,,,,.记事件为“这2个芒果都来自同一个质量区间”,则有4种不同组合:,,,从而,故这2个芒果都来自同一个质量区间的概率为.(3)方案①收入:(元);方案②:低于250克的芒果收入为(元);不低于250克的芒果收入为(元);故方案②的收入为(元).由于,所以选择方案②获利多.【题目点拨】本题考查平均数、概率的求法,考查频率分布直方图、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19、(1)W=73600-400000x-160x,(x≥40);(2)当x=50【解题分析】

(1)根据题意,即可求解利润关于产量的关系式为W=(2)由(1)的关系式,利用基本不等式求得最大值,即可求解最大利润.【题目详解】(1)由题意,可得利润W关于年产量x的函数关系式为W=xRx=74000-400000x-160x-400=73600-2由1可得W=73600-=73600-16000=57600,当且仅当400000x=160,即x=50时取等号,所以当x=50时,【题目点拨】本题主要考查了函数的实际应用问题,以及利用基本不等式求最值,其中解答中认真审题,得出利润W关于年产量x的函数关系式,再利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.20、(1)或.(2)【解题分析】试题分析:由题意可得圆的方程为.(1)由圆心到直线的距离等于半径可得,解得或,即为所求.(2)由圆与圆无公共点可得两圆内含或外离,根据圆心距和两半径的关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论