重庆市第二外国语学校2024年数学高三上期末质量跟踪监视模拟试题含解析_第1页
重庆市第二外国语学校2024年数学高三上期末质量跟踪监视模拟试题含解析_第2页
重庆市第二外国语学校2024年数学高三上期末质量跟踪监视模拟试题含解析_第3页
重庆市第二外国语学校2024年数学高三上期末质量跟踪监视模拟试题含解析_第4页
重庆市第二外国语学校2024年数学高三上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市第二外国语学校2024年数学高三上期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,集合,则().A. B.C. D.2.已知全集为,集合,则()A. B. C. D.3.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是()A. B. C. D.4.已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为()A.1 B.2 C.-1 D.-25.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是()A. B. C. D.6.下列与的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)7.已知实数满足则的最大值为()A.2 B. C.1 D.08.已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为()A. B.16 C. D.9.复数().A. B. C. D.10.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则()A. B. C. D.11.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)12.函数的定义域为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则________,________.14.已知数列的各项均为正数,满足,.,若是等比数列,数列的通项公式_______.15.己知双曲线的左、右焦点分别为,直线是双曲线过第一、三象限的渐近线,记直线的倾斜角为,直线,,垂足为,若在双曲线上,则双曲线的离心率为_______16.已知椭圆的离心率是,若以为圆心且与椭圆有公共点的圆的最大半径为,此时椭圆的方程是____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的各项均为正数,且满足.(1)求,及的通项公式;(2)求数列的前项和.18.(12分)已知函数.(1)设,若存在两个极值点,,且,求证:;(2)设,在不单调,且恒成立,求的取值范围.(为自然对数的底数).19.(12分)如图,在三棱柱中,是边长为2的菱形,且,是矩形,,且平面平面,点在线段上移动(不与重合),是的中点.(1)当四面体的外接球的表面积为时,证明:.平面(2)当四面体的体积最大时,求平面与平面所成锐二面角的余弦值.20.(12分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在[50,100]内,并得到如下的频数分布表:分数段[50,60)[60,70)[70,80)[80,90)[90,100]人数51515123(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”.请将下面的列联表补充完整,并判断是否有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?合格不合格合计高一新生12非高一新生6合计(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率.参考公式及数据:,其中.21.(12分)记为数列的前项和,已知,等比数列满足,.(1)求的通项公式;(2)求的前项和.22.(10分)如图所示,已知平面,,为等边三角形,为边上的中点,且.(Ⅰ)求证:面;(Ⅱ)求证:平面平面;(Ⅲ)求该几何体的体积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

算出集合A、B及,再求补集即可.【详解】由,得,所以,又,所以,故或.故选:A.【点睛】本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.2、D【解析】

对于集合,求得函数的定义域,再求得补集;对于集合,解得一元二次不等式,再由交集的定义求解即可.【详解】,,.故选:D【点睛】本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式.3、D【解析】

由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,,由此即可得到本题答案.【详解】由题,得,因为的图象与直线的两个相邻交点的距离等于,所以函数的最小正周期,则,所以,当时,,所以是函数的一条对称轴,故选:D【点睛】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.4、D【解析】

由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.【详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,,,三点共线,所以,得,故选D.【点睛】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.5、C【解析】

画出直观图,由球的表面积公式求解即可【详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为.故选:C【点睛】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.6、C【解析】

利用终边相同的角的公式判断即得正确答案.【详解】与的终边相同的角可以写成2kπ+(k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2)与终边相同的角=+其中.7、B【解析】

作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.8、C【解析】

根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【详解】由于平面平面,且交线为,,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【点睛】本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.9、A【解析】试题分析:,故选A.【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.10、D【解析】

由题知,又,代入计算可得.【详解】由题知,又.故选:D【点睛】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.11、C【解析】

先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.12、C【解析】

函数的定义域应满足故选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据诱导公式和二倍角公式计算得到答案.【详解】,故.故答案为:;.【点睛】本题考查了诱导公式和二倍角公式,属于简单题.14、【解析】

利用递推关系,等比数列的通项公式即可求得结果.【详解】因为,所以,因为是等比数列,所以数列的公比为1.又,所以当时,有.这说明在已知条件下,可以得到唯一的等比数列,所以,故答案为:.【点睛】该题考查的是有关数列的问题,涉及到的知识点有根据递推公式求数列的通项公式,属于简单题目.15、【解析】

由,则,所以点,因为,可得,点坐标化简为,代入双曲线的方程求解.【详解】设,则,即,解得,则,所以,即,代入双曲线的方程可得,所以所以解得.故答案为:【点睛】本题主要考查了直线与双曲线的位置关系,及三角恒等变换,还考查了运算求解的能力和数形结合的思想,属于中档题.16、【解析】

根据题意设为椭圆上任意一点,表达出,再根据二次函数的对称轴与求解的关系分析最值求解即可.【详解】因为椭圆的离心率是,,所以,故椭圆方程为.因为以为圆心且与椭圆有公共点的圆的最大半径为,所以椭圆上的点到点的距离的最大值为.设为椭圆上任意一点,则.所以因为的对称轴为.(i)当时,在上单调递增,在上单调递减.此时,解得.(ii)当时,在上单调递减.此时,解得舍去.综上,椭圆方程为.故答案为:【点睛】本题主要考查了椭圆上的点到定点的距离最值问题,需要根据题意设椭圆上的点,再求出距离,根据二次函数的对称轴与区间的关系分析最值的取值点分类讨论求解.属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);.;(2)【解析】

(1)根据题意,知,且,令和即可求出,,以及运用递推关系求出的通项公式;(2)通过定义法证明出是首项为8,公比为4的等比数列,利用等比数列的前项和公式,即可求得的前项和.【详解】解:(1)由题可知,,且,当时,,则,当时,,,由已知可得,且,∴的通项公式:.(2)设,则,所以,,得是首项为8,公比为4的等比数列,所以数列的前项和为:,即,所以数列的前项和:.【点睛】本题考查通过递推关系求数列的通项公式,以及等比数列的前项和公式,考查计算能力.18、(1)证明见解析;(2).【解析】

(1)先求出,又由可判断出在上单调递减,故,令,记,利用导数求出的最小值即可;(2)由在上不单调转化为在上有解,可得,令,分类讨论求的最大值,再求解即可.【详解】(1)已知,,由可得,又由,知在上单调递减,令,记,则在上单调递增;,在上单调递增;,(2),,在上不单调,在上有正有负,在上有解,,,恒成立,记,则,记,,在上单调增,在上单调减.于是知(i)当即时,恒成立,在上单调增,,,.(ii)当时,,故不满足题意.综上所述,【点睛】本题主要考查了导数的综合应用,考查了分类讨论,转化与化归的思想,考查了学生的运算求解能力.19、(1)证明见解析(2)【解析】

(1)由题意,先求得为的中点,再证明平面平面,进而可得结论;(2)由题意,当点位于点时,四面体的体积最大,再建立空间直角坐标系,利用空间向量运算即可.【详解】(1)证明:当四面体的外接球的表面积为时.则其外接球的半径为.因为时边长为2的菱形,是矩形.,且平面平面.则,.则为四面体外接球的直径.所以,即.由题意,,,所以.因为,所以为的中点.记的中点为,连接,.则,,,所以平面平面.因为平面,所以平面.(2)由题意,平面,则三棱锥的高不变.当四面体的体积最大时,的面积最大.所以当点位于点时,四面体的体积最大.以点为坐标原点,建立如图所示的空间直角坐标系.则,,,,.所以,,,.设平面的法向量为.则令,得.设平面的一个法向量为.则令,得.设平面与平面所成锐二面角是,则.所以当四面体的体积最大时,平面与平面所成锐二面角的余弦值为.【点睛】本题考查平面与平面的平行、线面平行,考查平面与平面所成锐二面角的余弦值,正确运用平面与平面的平行、线面平行的判定,利用好空间向量是关键,属于基础题.20、(1)见解析;(2)【解析】

(1)补充完整的列联表如下:合格不合格合计高一新生121426非高一新生18624合计302050则的观测值,所以有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关.(2)抽取的5名学生中竞赛成绩合格的有名学生,记为,竞赛成绩不合格的有名学生,记为,从这5名学生中随机抽取2名学生的基本事件有:,共10种,这2名学生竞赛成绩都合格的基本事件有:,共3种,所以这2名学生竞赛成绩都合格的概率为.21、(1)(2)当时,;当时,.【解析】

(1)利用数列与的关系,求得;(2)由(1)可得:,,算出公比,利用等比数列的前项和公式求出.【详解】(1)当时,,当时,,因为适合上式,所以.(2)由(1)得,,设等比数列的公比为,则,解得,当时,,当时,.【点睛】本题主要考查数列与的关系、等比数列的通项公式、前项和公式等基础知识

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论