2024届江西省南昌三中数学高一第二学期期末质量检测模拟试题含解析_第1页
2024届江西省南昌三中数学高一第二学期期末质量检测模拟试题含解析_第2页
2024届江西省南昌三中数学高一第二学期期末质量检测模拟试题含解析_第3页
2024届江西省南昌三中数学高一第二学期期末质量检测模拟试题含解析_第4页
2024届江西省南昌三中数学高一第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省南昌三中数学高一第二学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等差数列中,,且,且,是其前项和,则下列判断正确的是()A.、、均小于,、、、均大于B.、、、均小于,、、均大于C.、、、均小于,、、均大于D.、、、均小于,、、均大于2.若平面向量,满足,,且,则等于()A. B. C.2 D.83.关于的方程在内有相异两实根,则实数的取值范围为()A. B. C. D.4.已知实数满足,则的最大值为()A.8 B.2 C.4 D.65.已知数列满足,,,则的值为()A.12 B.15 C.39 D.426.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则7.已知是第二象限角,()A. B. C. D.8.圆的半径为()A.1 B.2 C.3 D.49.圆心坐标为,半径长为2的圆的标准方程是()A. B.C. D.10.设α,β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为_____________.12.已知等差数列的前项和为,若,则_______.13.设函数,则________.14.若函数有两个不同的零点,则实数的取值范围是______.15.正方形和内接于同一个直角三角形ABC中,如图所示,设,若两正方形面积分别为=441,=440,则=______16.正项等比数列中,,,则公比__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校进行学业水平模拟测试,随机抽取了名学生的数学成绩(满分分),绘制频率分布直方图,成绩不低于分的评定为“优秀”.(1)从该校随机选取一名学生,其数学成绩评定为“优秀”的概率;(2)估计该校数学平均分(同一组数据用该组区间的中点值作代表).18.数列满足,.(1)试求出,,;(2)猜想数列的通项公式并用数学归纳法证明.19.已知集合,,求.20.已知数列{bn}的前n项和,n∈N*.(1)求数列{bn}的通项公式;(2)记,求数列{cn}的前n项和Sn;(3)在(2)的条件下,记,若对任意正整数n,不等式恒成立,求整数m的最大值.21.设函数.(1)若不等式的解集,求的值;(2)若,①,求的最小值;②若在上恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

由,且可得,,,,结合等差数列的求和公式即等差数列的性质即可判断.【题目详解】,且,,数列的前项都是负数,,,,由等差数列的求和公式可得,,由公差可知,、、、均小于,、、均大于.故选:C.【题目点拨】本题考查等差数列前项和符号的判断,解题时要充分结合等差数列下标和的性质以及等差数列求和公式进行计算,考查分析问题和解决问题的能力,属于中等题.2、B【解题分析】

由,可得,再结合,展开可求出答案.【题目详解】由,可知,展开可得,所以,又,,所以.故选:B.【题目点拨】本题考查向量数量积的应用,考查学生的计算求解能力,注意向量的平方等于模的平方,属于基础题.3、C【解题分析】

将问题转化为与有两个不同的交点;根据可得,对照的图象可构造出不等式求得结果.【题目详解】方程有两个相异实根等价于与有两个不同的交点当时,由图象可知:,解得:本题正确选项:【题目点拨】本题考查正弦型函数的图象应用,主要是根据方程根的个数确定参数范围,关键是能够将问题转化为交点个数问题,利用数形结合来进行求解.4、D【解题分析】

设点,根据条件知点均在单位圆上,由向量数量积或斜率知识,可发现,对目标式子进行变形,发现其几何意义为两点到直线的距离之和有关.【题目详解】设,,均在圆上,且,设的中点为,则点到原点的距离为,点在圆上,设到直线的距离分别为,,,.【题目点拨】利用数形结合思想,发现代数式的几何意义,即构造系数,才能看出目标式子的几何意义为两点到直线距离之和的倍.5、B【解题分析】

根据等差数列的定义可得数列为等差数列,求出通项公式即可.【题目详解】由题意得所以为等差数列,,,选择B【题目点拨】本题主要考查了判断是否为等差数列以及等差数列通项的求法,属于基础题.6、D【解题分析】试题分析:,,故选D.考点:点线面的位置关系.7、A【解题分析】cosα=±=±,又∵α是第二象限角,∴cosα=-.8、A【解题分析】

将圆的一般方程化为标准方程,确定所求.【题目详解】因为圆,所以,所以,故选A.【题目点拨】本题考查圆的标准方程与一般方程互化,圆的标准方程通过展开化为一般方程,圆的一般方程通过配方化为标准方程,属于简单题.9、C【解题分析】

根据圆的标准方程的形式写.【题目详解】圆心为,半径为2的圆的标准方程是.故选C.【题目点拨】本题考查了圆的标准方程,故选C.10、A【解题分析】试题分析:当满足l⊂α,l⊥β时可得到α⊥β成立,反之,当l⊂α,α⊥β时,l与β可能相交,可能平行,因此前者是后者的充分不必要条件考点:充分条件与必要条件点评:命题:若p则q是真命题,则p是q的充分条件,q是p的必要条件二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】函数的定义域为故答案为12、【解题分析】

先由题意,得到,求出,再由等差数列的性质,即可得出结果.【题目详解】因为等差数列的前项和为,若,则,所以,因此.故答案为:【题目点拨】本题主要考查等差数列的性质的应用,熟记等差数列的求和公式,以及等差数列的性质即可,属于常考题型.13、【解题分析】

利用反三角函数的定义,解方程即可.【题目详解】因为函数,由反三角函数的定义,解方程,得,所以.故答案为:【题目点拨】本题考查了反三角函数的定义,属于基础题.14、【解题分析】

令,可得,从而将问题转化为和的图象有两个不同交点,作出图形,可求出答案.【题目详解】由题意,令,则,则和的图象有两个不同交点,作出的图象,如下图,是过点的直线,当直线斜率时,和的图象有两个交点.故答案为:.【题目点拨】本题考查函数零点问题,考查函数图象的应用,考查学生的计算求解能力,属于中档题.15、【解题分析】

首先根据在正方形S1和S2内,S1=441,S2=440,分别求出两个正方形的边长,然后分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式,求出sin2α的值即可.【题目详解】因为S1=441,S2=440,所以FD21,MQ=MN,因为AC=AF+FC2121,AC=AM+MCMNcosαcosα,所以:21cosα,整理,可得:(sinαcosα+1)=21(sinα+cosα),两边平方,可得110sin22α﹣sin2α﹣1=0,解得sin2α或sin2α(舍去),故sin2α.故答案为:.【题目点拨】本题主要考查了三角函数的求值问题,考查了正方形、直角三角形的性质,属于中档题,解答此题的关键是分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式.16、【解题分析】

根据题意,由等比数列的性质可得,进而分析可得答案.【题目详解】根据题意,等比数列中,,则,又由数列是正项的等比数列,所以.【题目点拨】本题主要考查了等比数列的通项公式的应用,其中解答中熟记等比数列的通项公式,以及注意数列是正项等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)该校数学平均分为.【解题分析】

(1)计算后两个矩形的面积之和,可得出结果;(2)将每个矩形底边中点值乘以相应矩形的面积,再将这些积相加可得出该校数学平均分.【题目详解】(1)从该校随机选取一名学生,成绩不低于分的评定为“优秀”的频率为,所以,数学成绩评定为“优秀”的概率为;(2)估计该校数学平均分.【题目点拨】本题考查频率分布直方图频率和平均数的计算,解题时要熟悉频率和平均数的计算原则,考查计算能力,属于基础题.18、(1),,(2),证明见详解.【解题分析】

(1)由题意得,在中分别令可求结果;(2)由数列前四项可猜想,运用数学归纳法可证明.【题目详解】解:(1),当时,,,当时,,,当时,,,所以,,(2)猜想下面用数学归纳法证明:假设时,有成立,则当时,有,故对成立.【题目点拨】该题考查由数列递推式求数列的项、通项公式,考查数学归纳法,考查学生的运算求解能力.19、【解题分析】

根据集合A,B的意义,求出集合A,B,再根据交集的运算求得结果即可.【题目详解】对于集合A,,对于集合B,当x<1时,故B=;故A∩B=故答案为【题目点拨】本题考查了交集的运算,准确计算集合A,B是关键,是基础题.20、(1)bn=3n﹣2,n∈N*.(2);(3)最大值为1.【解题分析】

(1)利用,求得数列的通项公式.(2)利用裂项求和法求得数列的前项和.(3)由(2)求得的表达式,记不等式左边为,利用差比较法判断出的单调性,进而求得的最小值,由此列不等式求得的取值范围,进而求得整数的最大值.【题目详解】(1)∵数列{bn}的前n项和,n∈N*.∴①当n=1时,b1=T1=1;②当n≥2时,bn=Tn﹣Tn﹣1=3n﹣2;∴bn=3n﹣2,n∈N*.(2)由(1)可得:;∴Sn=c1+c2+…+cn,,,;(3)由(2)可知:n;∴;设f(n);则f(n+1)﹣f(n)=()﹣()0;所以f(n+1)>f(n),故f(n)的最小值为f(1);∵对任意正整数n,不等式恒成立,∴恒成立,即m<12;故整数m的最大值为1.【题目点拨】本小题主要考查已知求,考查裂项求和法,考查数列单调性的判断方法,考查不等式恒成立问题的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论