




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省泗县一中高一数学第二学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中任取一实数作为x,则使得不等式成立的概率为()A. B. C. D.2.点,,直线与线段相交,则实数的取值范围是()A. B.或C. D.或3.平面平面,直线,,那么直线与直线的位置关系一定是()A.平行 B.异面 C.垂直 D.不相交4.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A. B. C. D.5.已知=(2,3),=(3,t),=1,则=A.-3 B.-2C.2 D.36.函数的图象()A.关于点(-,0)对称 B.关于原点对称 C.关于y轴对称 D.关于直线x=对称7.如图,某几何体的三视图如图所示,则此几何体的体积为()A. B. C. D.38.已知关于的不等式对任意恒成立,则的取值范围是()A. B.C. D.9.在中,内角所对的边分别为,且,则()A. B. C. D.10.在中,已知,那么一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形二、填空题:本大题共6小题,每小题5分,共30分。11.已知等腰三角形底角的余弦值等于,则这个三角形顶角的正弦值为________.12.已知数列{an}的前n项和Sn=2n-3,则数列{an}的通项公式为________.13.若,则________.14.弧度制是数学上一种度量角的单位制,数学家欧拉在他的著作《无穷小分析概论》中提出把圆的半径作为弧长的度量单位.已知一个扇形的弧长等于其半径长,则该扇形圆心角的弧度数是__________.15.已知向量,则________16.在ΔABC中,a比c长4,b比c长2,且最大角的余弦值是-12,则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=asin(x)(a>0)在同一半周期内的图象过点O,P,Q,其中O为坐标原点,P为函数f(x)的最高点,Q为函数f(x)的图象与x轴的正半轴的交点,△OPQ为等腰直角三角形.(1)求a的值;(2)将△OPQ绕原点O按逆时针方向旋转角α(0<α),得到△OP′Q′,若点P′恰好落在曲线y(x>0)上(如图所示),试判断点Q′是否也落在曲线y(x>0),并说明理由.18.已知数列和中,数列的前n项和为,若点在函数的图象上,点在函数的图象上.设数列.(1)求数列的通项公式;(2)求数列的前项和;(3)求数列的最大值.19.已知是同一平面内的三个向量,其中.(Ⅰ)若,且,求;(Ⅱ)若,且与垂直,求实数的值.20.设函数.(1)求函数的单调递增区间;(2)当时,求函数的值域.21.在中,内角,,所对的边分别为,,.已知.(Ⅰ)求;(Ⅱ)若,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
先求解不等式,再利用长度型的几何概型概率公式求解即可【题目详解】由题,因为,解得,则,故选:C【题目点拨】本题考查长度型的几何概型,考查解对数不等式2、B【解题分析】
根据,在直线异侧或其中一点在直线上列不等式求解即可.【题目详解】因为直线与线段相交,所以,,在直线异侧或其中一点在直线上,所以,解得或,故选B.【题目点拨】本题主要考查点与直线的位置关系,考查了一元二次不等式的解法,属于基础题.3、D【解题分析】
利用空间中线线、线面、面面的位置关系得出直线与直线没有公共点.【题目详解】由题平面平面,直线,则直线与直线的位置关系平行或异面,即两直线没有公共点,不相交.故选D.【题目点拨】本题考查空间中两条直线的位置关系,属于简单题.4、B【解题分析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.5、C【解题分析】
根据向量三角形法则求出t,再求出向量的数量积.【题目详解】由,,得,则,.故选C.【题目点拨】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.6、A【解题分析】
关于点(-,0)对称,选A.7、A【解题分析】
首先根据三视图画出几何体的直观图,进一步利用几何体的体积公式求出结果.【题目详解】解:根据几何体得三视图转换为几何体为:故:V.故选:A.【题目点拨】本题考查的知识要点:三视图和几何体之间的转换,几何体的体积公式的应用,主要考察学生的运算能力和转换能力,属于基础题.8、A【解题分析】
分别讨论和两种情况下,恒成立的条件,即可求得的取值范围.【题目详解】当时,不等式可化为,其恒成立当时,要满足关于的不等式任意恒成立,只需解得:.综上所述,的取值范围是.故选:A.【题目点拨】本题考查了含参数一元二次不等式恒成立问题,解题关键是掌握含有参数的不等式的求解,首先需要对二次项系数讨论,注意分类讨论思想的应用,属于基础题.9、C【解题分析】
根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sinA,进而利用二倍角余弦公式得到结果.【题目详解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故选C【题目点拨】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.10、B【解题分析】
先化简sinAcosB=sinC=,即得三角形形状.【题目详解】由sinAcosB=sinC得所以sinBcosA=0,因为A,B∈(0,π),所以sinB>0,所以cosA=0,所以A=,所以三角形是直角三角形.故答案为A【题目点拨】本题主要考查三角恒等变换和三角函数的图像性质,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
已知等腰三角形可知为锐角,利用三角形内角和为,建立底角和顶角之间的关系,再求解三角函数值.【题目详解】设此三角形的底角为,顶角为,易知为锐角,则,,所以.【题目点拨】给值求值的关键是找准角与角之间的关系,再利用已知的函数求解未知的函数值.12、【解题分析】
利用来求的通项.【题目详解】,化简得到,填.【题目点拨】一般地,如果知道的前项和,那么我们可利用求其通项,注意验证时,(与有关的解析式)的值是否为,如果是,则,如果不是,则用分段函数表示.13、【解题分析】
观察式子特征,直接写出,即可求出。【题目详解】观察的式子特征,明确各项关系,以及首末两项,即可写出,所以,相比,增加了后两项,少了第一项,故。【题目点拨】本题主要考查学生的数学抽象能力,正确弄清式子特征是解题关键。14、1【解题分析】设扇形的弧长和半径长为,由弧度制的定义可得,该扇形圆心角的弧度数是.15、2【解题分析】
由向量的模长公式,计算得到答案.【题目详解】因为向量,所以,所以答案为.【题目点拨】本题考查向量的模长公式,属于简单题.16、15【解题分析】
由a比c长4,b比c长2,用c表示出a与b,可得出a为最大边,即A为最大角,可得出cosA的值,由A为三角形的内角,利用特殊角的三角函数值求出A的度数,同时利用余弦定理表示出cosA,将表示出的a与b代入,并根据最大角的余弦值,得到关于c的方程,求出方程的解得到c的值,然后由b,c及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积.【题目详解】根据题意得:a=c+4,b=c+2,则a为最长边,∴A为最大角,又cosA=-12,且∴A=120cos整理得:c2-c-6=0,即(c−3)(解得:c=3或c=−2(舍去),∴a=3+4=7,b=3+2=5,则△ABC的面积S=12bcsinA=15故答案为:153【题目点拨】余弦定理一定要熟记两种形式:(1)a2=b2+三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2)见解析.【解题分析】
(1)由已知利用周期公式可求最小正周期T=8,由题意可求Q坐标为(1,0).P坐标为(2,a),结合△OPQ为等腰直角三角形,即可得解a的值.(2)由(Ⅰ)知,|OP|=2,|OQ|=1,可求点P′,Q′的坐标,由点P′在曲线y(x>0)上,利用倍角公式,诱导公式可求cos2,又结合0<α,可求sin2α的值,由于1cosα•1sinα=8sin2α=23,即可证明点Q′不落在曲线y(x>0)上.【题目详解】(Ⅰ)因为函数f(x)=asin(x)(a>0)的最小正周期T8,所以函数f(x)的半周期为1,所以|OQ|=1.即有Q坐标为(1,0).又因为P为函数f(x)图象的最高点,所以点P坐标为(2,a),又因为△OPQ为等腰直角三角形,所以a2.(Ⅱ)点Q′不落在曲线y(x>0)上.理由如下:由(Ⅰ)知,|OP|=2,|OQ|=1,所以点P′,Q′的坐标分别为(2cos(),2sin()),(1cosα,1sinα),因为点P′在曲线y(x>0)上,所以3=8cos()sin()=1sin(2)=1cos2α,即cos2,又0<α,所以sin2α.又1cosα•1sinα=8sin2α=823.所以点Q′不落在曲线y(x>0)上.18、(1)(2)(3)【解题分析】
(1)先根据题设知,再利用求得,验证符合,最后答案可得.
(2)由题设可知,把代入,然后用错位相减法求和;(3)计算,判断其大于零时的范围,可得数列取最大值时的项数,进而可得最大值..【题目详解】解:(1)由已知得:,∵当时,,又当时,符合上式.(2)由已知得:①②②-①可得:(3)令,得:,又且,即为最大,故最大值为.【题目点拨】本题主要考查了数列的递推式解决数列的通项公式和求和问题,考查数列最大项的求解,是中档题.19、(Ⅰ);(Ⅱ).【解题分析】
(1)根据向量平行的相关性质以及、即可得出向量,然后根据向量的模长公式即可得出结果;(2)首先可根据、写出与的坐标表示,然后根据向量垂直可得,最后通过计算即可得出结果.【题目详解】(1)因为,,所以,,,所以.(2)因为,,所以,.因为与垂直,所以,即,.【题目点拨】本题考查向量平行以及向量垂直的相关性质,考查向量的坐标表示以及向量的模长公式,若、且,则,考查计算能力,是中档题.20、(1)函数递增区间为,(2)【解题分析】
(1)化简,再根据正弦函数的单调增区间即可.(2)根据(1)的结果,再根据求出的范围结合图像即可.【题目详解】解:(1)由,则函数递增区间为,(2)由,得则则,即值域为【题目点拨】本题主要考查了三角函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 买房房地产借款合同二零二五年
- 支架取栓术后用药护理
- 二零二五场地租赁安全协议书范例
- 二零二五版二手房屋买卖合同的范例
- 统计学基础概念回顾试题及答案
- 重要的农业经理人考试解题思路分享试题及答案
- 眼科院感知识培训课件
- 二零二五版学校食堂摊位租赁合同书
- 眉形设计知识培训课件
- 管理层职业规划
- 中考监考和考务人员培训手册
- 数学史简介课件可编辑全文
- 第22课《从局部抗战到全国抗战》 课件 统编版高中历史中外历史纲要上册
- 浙江省A9协作体2023-2024学年高二下学期4月期中英语试题
- 医疗救助补助资金管理办法
- 水电站110kV变电站接地电阻计算书
- 2025届江苏南京市盐城市高三第二次模拟考试历史试卷含解析
- 江苏省靖江外国语学校2023-2024学年中考数学最后冲刺模拟试卷含解析
- 鼠疫的防治专题知识讲座课件
- GB/T 44013-2024应急避难场所分级及分类
- 影像进修汇报
评论
0/150
提交评论