黑龙江省齐齐哈尔市八中2024届数学高一下期末复习检测试题含解析_第1页
黑龙江省齐齐哈尔市八中2024届数学高一下期末复习检测试题含解析_第2页
黑龙江省齐齐哈尔市八中2024届数学高一下期末复习检测试题含解析_第3页
黑龙江省齐齐哈尔市八中2024届数学高一下期末复习检测试题含解析_第4页
黑龙江省齐齐哈尔市八中2024届数学高一下期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省齐齐哈尔市八中2024届数学高一下期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的部分图象如图所示,则函数的表达式是()A. B.C. D.2.已知随机事件中,与互斥,与对立,且,则()A.0.3 B.0.6 C.0.7 D.0.93.若直线过,,则该直线的斜率为A.2 B.3 C.4 D.54.已知向量,,则()A. B. C. D.5.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,86.若,,表示三条不重合的直线,,表示两个不同的平面,则下列命题中,正确的个数是()①若,,则②,,,则③若,,则④若,,则A.0 B.1 C.2 D.37.函数的部分图象如图所示,为了得到的图象,只需将的图象A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位8.设的内角所对边分别为.则该三角形()A.无解 B.有一解 C.有两解 D.不能确定9.数列中,对于任意,恒有,若,则等于()A. B. C. D.10.已知点,则向量()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设为三条不同的直线,为两个不同的平面,给出下列四个判断:①若则;②若是在内的射影,,则;③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;④若球的表面积扩大为原来的16倍,则球的体积扩大为原来的32倍;其中正确的为___________.12.用列举法表示集合__________.13.设奇函数的定义域为R,且对任意实数满足,若当∈[0,1]时,,则____.14.等差数列满足,则其公差为__________.15.已知向量a=(2,-4),b=(-3,-4),则向量a与16.已知,,,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量(cosx+sinx,1),(sinx,),函数.(1)若f(θ)=3且θ∈(0,π),求θ;(2)求函数f(x)的最小正周期T及单调递增区间.18.已知等差数列的前n项和为,且,.(1)求;(2)求.19.已知点A(1,2),B(3,1),C(2,2),D(1,m)(1)若向量∥,求实数m的值;(2)若m=3,求向量与的夹角.20.已知在直角三角形ABC中,,(如右图所示)(Ⅰ)若以AC为轴,直角三角形ABC旋转一周,试说明所得几何体的结构特征并求所得几何体的表面积.(Ⅱ)一只蚂蚁在问题(Ⅰ)形成的几何体上从点B绕着几何体的侧面爬行一周回到点B,求蚂蚁爬行的最短距离.21.如图,在三棱柱中,底面,,,,分别为的中点,为侧棱上的动点(Ⅰ)求证:平面平面;(Ⅱ)若为线段的中点,求证:平面;(Ⅲ)试判断直线与平面是否能够垂直.若能垂直,求的值;若不能垂直,请说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

根据函数的最值求得,根据函数的周期求得,根据函数图像上一点的坐标求得,由此求得函数的解析式.【题目详解】由题图可知,且即,所以,将点的坐标代入函数,得,即,因为,所以,所以函数的表达式为.故选D.【题目点拨】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.2、C【解题分析】

由对立事件概率关系得到B发生的概率,再由互斥事件的概率计算公式求P(A+B).【题目详解】因为,事件B与C对立,所以,又,A与B互斥,所以,故选C.【题目点拨】本题考查互斥事件的概率,能利用对立事件概率之和为1进行计算,属于基本题.3、A【解题分析】

由直线的斜率公式,即可求解,得到答案.【题目详解】由题意,直线过点,,由斜率公式,可得斜率,故选A.【题目点拨】本题主要考查了斜率公式的应用,其中解答中熟记直线的斜率公式是解答的关键,着重考查了推理与运算能力,属于基础题.4、D【解题分析】

根据平面向量的数量积,计算模长即可.【题目详解】因为向量,,则,,故选:D.【题目点拨】本题考查了平面向量的数量积与模长公式的应用问题,是基础题.5、C【解题分析】试题分析:由题意得,,选C.考点:茎叶图6、B【解题分析】

①根据空间线线位置关系的定义判定;②根据面面平行的性质判定;③根据空间线线垂直的定义判定;④根据线面垂直的性质判定.【题目详解】解:①若,,与的位置关系不定,故错;②若,,,则或、异面,故错;③若,,则或、异面,故错;④若,,则,故正确.故选:.【题目点拨】本题考查了空间线面位置关系,考查了空间想象能力,属于中档题.7、B【解题分析】试题分析:由图象知,,,,,得,所以,为了得到的图象,所以只需将的图象向右平移个长度单位即可,故选D.考点:三角函数图象.8、C【解题分析】

利用正弦定理以及大边对大角定理求出角,从而判断出该三角形解的个数.【题目详解】由正弦定理得,所以,,,,或,因此,该三角形有两解,故选C.【题目点拨】本题考查三角形解的个数的判断,解题时可以充分利用解的个数的等价条件来进行判断,具体来讲,在中,给定、、,该三角形解的个数判断如下:(1)为直角或钝角,,一解;,无解;(2)为锐角,或,一解;,两解;,无解.9、D【解题分析】因为,所以

,

.选D.10、D【解题分析】

利用终点的坐标减去起点的坐标,即可得到向量的坐标.【题目详解】∵点,,∴向量,,.故选:D.【题目点拨】本题考查向量的坐标表示,考查运算求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①②【解题分析】

对四个命题分别进行判断即可得到结论【题目详解】①若,垂足为,与确定平面,,则,,则,,则,故,故正确②若,是在内的射影,,根据三垂线定理,可得,故正确③底面是等边三角形,侧面都是有公共顶点的等腰三角形的三棱锥是正三棱锥,故不正确④若球的表面积扩大为原来的倍,则半径扩大为原来的倍,则球的体积扩大为原来的倍,故不正确其中正确的为①②【题目点拨】本题主要考查了空间中直线与平面之间的位置关系、球的体积等知识点,数量掌握各知识点然后对其进行判断,较为基础。12、【解题分析】

先将的表示形式求解出来,然后根据范围求出的可取值.【题目详解】因为,所以,又因为,所以,此时或,则可得集合:.【题目点拨】本题考查根据三角函数值求解给定区间中变量的值,难度较易.13、【解题分析】

根据得到周期,再利用周期以及奇函数将自变量转变到给定区间计算函数值.【题目详解】因为,所以,所以,又因为,所以,则,故,又因为是奇函数,所以,则.【题目点拨】(1)形如的函数是周期函数,周期;(2)若要根据奇偶性求解分段函数的表达式,记住一个原则:“用未知表示已知”,也就是将自变量变形,利用已知范围和解析式求解.14、【解题分析】

首先根据等差数列的性质得到,再根据即可得到公差的值.【题目详解】,解得.,所以.故答案为:【题目点拨】本题主要考查等差数列的性质,熟记公式为解题的关键,属于简单题.15、5【解题分析】

先求出a⋅b,再求【题目详解】由题得a所以向量a与b夹角的余弦值为cosα=故答案为5【题目点拨】(1)本题主要考查向量的夹角的计算,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)求两个向量的夹角一般有两种方法,方法一:cos<a,b>=a·bab,方法二:设a=(x1,y16、【解题分析】

将所求的式子变形为,展开后可利用基本不等式求得最小值.【题目详解】解:,,,,当且仅当时取等号.故答案为1.【题目点拨】本题考查了“乘1法”和基本不等式,属于基础题.由于已知条件和所求的式子都是和的形式,不能直接用基本不等式求得最值,使用“乘1法”之后,就可以利用基本不等式来求得最小值了.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)θ(2)最小正周期为π;单调递增区间为[kπ,kπ],k∈Z【解题分析】

(1)计算平面向量的数量积得出函数f(x)的解析式,求出f(θ)=3时θ的值;

(2)根据函数f(x)的解析式,求出它的最小正周期和单调递增区间.【题目详解】(1)向量(cosx+sinx,1),(sinx,),函数=sinx(cosx+sinx)sinxcosx+sin2xsin2xcos2x+2=sin(2x)+2,f(θ)=3时,sin(2θ)=1,解得2θ2kπ,k∈Z,即θkπ,k∈Z;又θ∈(0,π),所以θ;(2)函数f(x)=sin(2x)+2,它的最小正周期为Tπ;令2kπ≤2x2kπ,k∈Z,kπ≤xkπ,k∈Z,所以f(x)的单调递增区间为[kπ,kπ],k∈Z.【题目点拨】本题考查了平面向量的数量积计算问题,也考查了三角函数的图象与性质的应用问题,是基础题.18、(1);(2)【解题分析】

(1)由可求得公差,利用等差数列通项公式求得结果;(2)利用等差数列前项和公式可求得结果.【题目详解】(1)设等差数列公差为,则,解得:(2)由(1)知:【题目点拨】本题考查等差数列通项公式和前项和的求解问题,考查基础公式的应用,属于基础题.19、(1)1;(2).【解题分析】

(1)先求出,的坐标,再根据两向量平行坐标交叉相乘相减等于零求解;(2)先求出,的坐标和模,再求,的数量积,即可求向量与的夹角.【题目详解】(1)因为A(1,2),B(3,1),C(2,2),D(1,m),所以,,若向量∥,则,即,(2)若m=3,则,,所以,,,所以,故向量与的夹角为.【题目点拨】本题考查向量平行与夹角的计算.向量平行根据向量共线定理,求向量的夹角要选择合适的公式.20、(Ⅰ)几何体为以为半径,高的圆锥,(Ⅱ)【解题分析】

(Ⅰ)若以为轴,直角三角形旋转一周,形成的几何体为以为半径,高的圆锥,由圆锥的表面积公式,即可求出结果.(Ⅱ)利用侧面展开图,要使蚂蚁爬行的最短距离,则沿点B的母线把圆锥侧面展开为平面图形(如图)最短距离就是点B到点的距离,代入数值,即可求出结果.【题目详解】解:(Ⅰ)在直角三角形ABC中,由即,得,若以为轴旋转一周,形成的几何体为以为半径,高的圆锥,则,其表面积为.(Ⅱ)由问题(Ⅰ)的圆锥,要使蚂蚁爬行的最短距离,则沿点B的母线把圆锥侧面展开为平面图形(如图)最短距离就是点B到点的距离,,在中,由余弦定理得:【题目点拨】本题考查了圆锥的表面积以及侧面展开图的应用,考查了学生的空间想象能力,属于基础题.21、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)直线BC1与平面APM不能垂直,详见解析【解题分析】

(Ⅰ)由等腰三角形三线合一得;由线面垂直性质可得;根据线面垂直的判定定理知平面;由面面垂直判定定理证得结论;(Ⅱ)取中点,可证得,;利用线面平行判定定理和面面平行判定定理可证得平面平面;根据面面平行性质可证得结论;(Ⅲ)假设平面,由线面垂直性质可知,利用相似三角形得到,从而解得长度,可知满足垂直关系时,不在棱上,则假设错误,可得到结论.【题目详解】(Ⅰ),为中点平面,平面又平面平面,平面又平面平面平面(Ⅱ)取中点,连接分别为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论