![2024届杭州学军中学高一数学第二学期期末统考模拟试题含解析_第1页](http://file4.renrendoc.com/view10/M02/35/15/wKhkGWWkEUqAdd9cAAGv6M-Mbr8170.jpg)
![2024届杭州学军中学高一数学第二学期期末统考模拟试题含解析_第2页](http://file4.renrendoc.com/view10/M02/35/15/wKhkGWWkEUqAdd9cAAGv6M-Mbr81702.jpg)
![2024届杭州学军中学高一数学第二学期期末统考模拟试题含解析_第3页](http://file4.renrendoc.com/view10/M02/35/15/wKhkGWWkEUqAdd9cAAGv6M-Mbr81703.jpg)
![2024届杭州学军中学高一数学第二学期期末统考模拟试题含解析_第4页](http://file4.renrendoc.com/view10/M02/35/15/wKhkGWWkEUqAdd9cAAGv6M-Mbr81704.jpg)
![2024届杭州学军中学高一数学第二学期期末统考模拟试题含解析_第5页](http://file4.renrendoc.com/view10/M02/35/15/wKhkGWWkEUqAdd9cAAGv6M-Mbr81705.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届杭州学军中学高一数学第二学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的值等于()A. B. C. D.2.已知、为锐角,,,则()A. B. C. D.3.设且,的最小值为()A.10 B.9 C.8 D.4.△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-,则=A.6 B.5 C.4 D.35.若不等式对任意,恒成立,则实数的取值范围是()A. B. C. D.6.设是两个不同的平面,是一条直线,以下命题正确的是()A.若,则 B.若,则C.若,则 D.若,则7.若数列{an}前8项的值各异,且an+8=an对任意n∈N*都成立,则下列数列中可取遍{an}前8项值的数列为()A.{a2k+1} B.{a3k+1} C.{a4k+1} D.{a6k+1}8.已知是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则9.在区间内随机取一个实数a,使得关于x的方程有实数根的概率为()A. B. C. D.10.若,,,设,,且,则的值为()A.0 B.3 C.15 D.18二、填空题:本大题共6小题,每小题5分,共30分。11.设无穷等比数列的公比为,若,则__________________.12.已知,且,则________.13.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一数值也可以近似地用表示,则_____.14.利用直线与圆的有关知识求函数的最小值为_______.15.不等式的解集为______.16.已知向量,,且,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列{an}满足a2=0,a6+a8=-10.(1)求数列{an}的通项公式;(2)求数列的前n项和.18.如图,正三棱柱的各棱长均为,为棱的中点,求异面直线与所成角的余弦值.19.已知数列是公差不为0的等差数列,成等比数列.(1)求;(2)设,数列的前n项和为,求20.已知数列为递增的等差数列,,且成等比数列.数列的前项和为,且满足.(1)求,的通项公式;(2)令,求的前项和.21.的内角、、的对边分别为、、,且.(Ⅰ)求角;(Ⅱ)若,且边上的中线的长为,求边的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】=,选A.2、B【解题分析】
利用同角三角函数的基本关系求出的值,然后利用两角差的正切公式可求得的值.【题目详解】因为,且为锐角,则,所以,因为,所以故选:B.【题目点拨】本题考查利用两角差的正切公式求值,解答的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.3、B【解题分析】
由配凑出符合基本不等式的形式,利用基本不等式即可求得结果.【题目详解】(当且仅当,即时取等号)的最小值为故选:【题目点拨】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活利用“”,配凑出符合基本不等式的形式.4、A【解题分析】
利用余弦定理推论得出a,b,c关系,在结合正弦定理边角互换列出方程,解出结果.【题目详解】详解:由已知及正弦定理可得,由余弦定理推论可得,故选A.【题目点拨】本题考查正弦定理及余弦定理推论的应用.5、B【解题分析】∵不等式对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,∴,∴,∴实数的取值范围是,故选B.6、C【解题分析】对于A、B、D均可能出现,而对于C是正确的.7、B【解题分析】
数列是周期为8的数列;,;故选B8、D【解题分析】
根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【题目详解】对于A选项,直线有可能在平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能平行,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选D.【题目点拨】本小题主要考查空间线、面位置关系的判断,属于基础题.9、C【解题分析】
由关于x的方程有实数根,求得,再结合长度比的几何概型,即可求解,得到答案.【题目详解】由题意,关于x的方程有实数根,则满足,解得,所以在区间内随机取一个实数a,使得关于x的方程有实数根的概率为.故选:C.【题目点拨】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力,属于基础题.10、B【解题分析】
首先分别求出向量,然后再用两向量平行的坐标表示,最后求值.【题目详解】,,当时,,解得.故选B.【题目点拨】本题考查了向量平行的坐标表示,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由可知,算出用表示的极限,再利用性质计算得出即可.【题目详解】显然公比不为1,所以公比为的等比数列求和公式,且,故.此时当时,求和极限为,所以,故,所以,故,又,故.故答案为:.【题目点拨】本题主要考查等比数列求和公式,当时.12、【解题分析】试题分析:由得:解方程组:得:或因为,所以所以不合题意,舍去所以,所以,答案应填:.考点:同角三角函数的基本关系和两角差的三角函数公式.13、【解题分析】
代入分式利用同角三角函数的平方关系、二倍角公式及三角函数诱导公式化简即可.【题目详解】.故答案为:2【题目点拨】本题考查同角三角函数的平方关系、二倍角公式及三角函数诱导公式,属于基础题.14、【解题分析】
令得,转化为z==,再利用圆心到直线距离求最值即可【题目详解】令,则故转化为z==,表示上半个圆上的点到直线的距离的最小值的5倍,即故答案为3【题目点拨】本题考查直线与圆的位置关系,点到直线的距离公式,考查数形结合思想,是中档题15、【解题分析】
根据一元二次不等式的解法直接求解可得结果.【题目详解】由得:即不等式的解集为故答案为:【题目点拨】本题考查一元二次不等式的求解问题,属于基础题.16、-2或3【解题分析】
用坐标表示向量,然后根据垂直关系得到坐标运算关系,求出结果.【题目详解】由题意得:或本题正确结果:或【题目点拨】本题考查向量垂直的坐标表示,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)设等差数列{an}的公差为d,由已知条件可得,解得,故数列{an}的通项公式为an=2-n.(2)设数列的前n项和为Sn,∵,∴Sn=-记Tn=,①则Tn=,②①-②得:Tn=1+,∴Tn=-,即Tn=4-.∴Sn=-4+=4-4+=.18、【解题分析】
作交于,则为异面直线与所成角,在中求出各边的长度,根据余弦定理,得到的余弦值,即为答案.【题目详解】作交于,则为异面直线与所成角,因为为中点,所以是的一条中位线,所以,因为正三棱柱,所以面,而面,所以所以在中,,则,在中,,则,在中,由余弦定理得.故答案为【题目点拨】本题考查求异面直线所成的角的余弦值,余弦定理,属于简单题.19、(1)(2)【解题分析】
(1)根据已知条件求出,再写出等差数列的通项得解;(2)利用分组求和求.【题目详解】解:(1)设数列的首项为,公差为,则.因为成等比数列,所以,化简得又因为,所以,又因为,所以.所以.(2)根据(1)可知,【题目点拨】本题主要考查等差数列通项的求法,考查等差等比数列前n项和的计算和分组求和,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1),(2)【解题分析】
(1)先根据成等比数列,可求出公差,即得的通项公式;根据可得的通项公式;(2)由(1)可得的通项公式,用错位相减法计算它的前n项和,即得。【题目详解】(1)由题得,,设数列的公差为,则有,解得,那么等差数列的通项公式为;数列的前项和为,且满足,当时,,可得,当时,可得,整理得,数列是等比数列,通项公式为.(2)由题得,,前n项和,,两式相减可得,整理化简得.【题目点拨】本题考查等比数列的性质,以及用错位相减法求数列的前n项和,对计算能力有一定要求。21、(Ⅰ);(Ⅱ)4.【解题分析】
(Ⅰ)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货物陆运合同范文范本模板
- 物业管理的噪音与污染管理
- 我国自动驾驶车路协同发展现状分析
- 人脐带间充质干细胞通过抑制NLRP3介导的滑膜细胞焦亡减轻膝骨关节炎
- 扩张法与Nagata法治疗小耳畸形的疗效对比分析
- 2025年岳麓版选择性必修2历史上册阶段测试试卷含答案
- 智能家居产品销售代理合同(2篇)
- 2025年外研衔接版九年级历史下册月考试卷含答案
- 服装购买合同协议书范本(2篇)
- 2025年外研版三年级起点选择性必修1历史上册阶段测试试卷
- 中小商业银行数字化转型现状及对策研究
- 亲子非暴力沟通培训讲座
- 保险投诉处理流程培训
- JJG 707-2014扭矩扳子行业标准
- 2025财年美国国防预算概览-美国国防部(英)
- 2024年江西省南昌市中考一模数学试题(含答案)
- 《采暖空调节能技术》课件
- CONSORT2010流程图(FlowDiagram)【模板】文档
- 游戏综合YY频道设计模板
- 中兴ZCTP 5GC高级工程师认证考试题库汇总(含答案)
- 大学生创新创业教程PPT全套完整教学课件
评论
0/150
提交评论