版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省澄江县第二中学高一数学第二学期期末达标测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知x,y∈R,且x>y>0,则()A. B.C. D.lnx+lny>02.已知是定义在上的奇函数,且满足,当时,,则等于()A.-1 B. C. D.13.设,过定点的动直线和过定点的动直线交于点,则的最大值是()A. B. C. D.4.设点是函数图象士的任意一点,点满足,则的最小值为()A. B. C. D.5.设为等比数列,给出四个数列:①,②,③,④.其中一定为等比数列的是()A.①③ B.②④ C.②③ D.①②6.空间中可以确定一个平面的条件是()A.三个点 B.四个点 C.三角形 D.四边形7.在中,,,,则的面积是()A. B. C.或 D.或8.已知下列各命题:①两两相交且不共点的三条直线确定一个平面:②若真线不平行于平面,则直线与平面有公共点:③若两个平面垂直,则一个平面内的已知直线必垂直于另一个平面的无数条直线:④若两个二面角的两个面分别对应垂直,则这两个二面角相等或互补.则其中正确的命题共有()个A. B. C. D.9.已知数列的通项公式是,则该数列的第五项是()A. B. C. D.10.的内角的对边分别为,若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知球的表面积为4,则该球的体积为________.12.某学校成立了数学,英语,音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图.现随机选取一个成员,他恰好只属于2个小组的概率是____.13.在中,,过直角顶点作射线交线段于点,则的概率为______.14.若正实数,满足,则的最小值是________.15.设,且,则的取值范围是______.16.在等比数列中,已知,则=________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.给定常数,定义函数,数列满足.(1)若,求及;(2)求证:对任意,;(3)是否存在,使得成等差数列?若存在,求出所有这样的,若不存在,说明理由.18.已知A,B,C是的内角,a,b,c分别是其对边长,向量,,且.(1)求角的大小;(2)若,,求的面积.19.如图1,ABCD为菱形,∠ABC=60°,△PAB是边长为2的等边三角形,点M为AB的中点,将△PAB沿AB边折起,使平面PAB⊥平面ABCD,连接PC、PD,如图2,(1)证明:AB⊥PC;(2)求PD与平面ABCD所成角的正弦值(3)在线段PD上是否存在点N,使得PB∥平面MC?若存在,请找出N点的位置;若不存在,请说明理由20.已知直线截圆所得的弦长为.直线的方程为.(1)求圆的方程;(2)若直线过定点,点在圆上,且,为线段的中点,求点的轨迹方程.21.已知数列是等差数列,是其前项和.(1)求数列的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
结合选项逐个分析,可选出答案.【题目详解】结合x,y∈R,且x>y>0,对选项逐个分析:对于选项A,,,故A正确;对于选项B,取,,则,故B不正确;对于选项C,,故C错误;对于选项D,,当时,,故D不正确.故选A.【题目点拨】本题考查了不等式的性质,属于基础题.2、C【解题分析】
根据求得函数的周期,再结合奇偶性求得所求表达式的值.【题目详解】由于故函数是周期为的周期函数,故,故选C.【题目点拨】本小题主要考查函数的周期性,考查函数的奇偶性,考查函数值的求法,属于基础题.3、A【解题分析】
由题意知两直线互相垂直,根据直线分别求出定点与定点,再利用基本不等式,即可得出答案。【题目详解】直线过定点,直线过定点,又因直线与直线互相垂直,即即,当且仅当时取等号故选A【题目点拨】本题考查直线位置关系,考查基本不等式,属于中档题。4、B【解题分析】
函数表示圆位于x轴下面的部分。利用点到直线的距离公式,求出最小值。【题目详解】函数化简得。圆心坐标,半径为2.所以【题目点拨】本题考查点到直线的距离公式,属于基础题。5、D【解题分析】
设,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【题目详解】设,①,,所以数列是等比数列;②,,所以数列是等比数列;③,不是一个常数,所以数列不是等比数列;④,不是一个常数,所以数列不是等比数列.故选D【题目点拨】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.6、C【解题分析】
根据公理2即可得出答案.【题目详解】在A中,不共线的三个点能确定一个平面,共线的三个点不能确定一个平面,故A错误;在B中,不共线的四个点最多能确定四个平面,故B错误;在C中,由于三角形的三个顶点不共线,因此三角形能确定一个平面,故C正确;在D中,四边形有空间四边形和平面四边形,空间四边形不能确定一个平面,故D错误.【题目点拨】本题对公理2进行了考查,确定一个平面关键是对过不在一条直线上的三点,有且只有一个平面的理解.7、C【解题分析】
先根据正弦定理求出角,从而求出角,再根据三角形的面积公式进行求解即可.【题目详解】解:由,,,根据正弦定理得:,为三角形的内角,或,或在中,由,,或则面积或.故选C.【题目点拨】本题主要考查了正弦定理,三角形的面积公式以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于中档题.8、B【解题分析】
①利用平面的基本性质判断.②利用直线与平面的位置关系判断.③由面面垂直的性质定理判断.④通过举反例来判断.【题目详解】①两两相交且不共点,形成三个不共线的点,确定一个平面,故正确.②若真线不平行于平面,则直线与平面相交或在平面内,所以有公共点,故正确.③若两个平面垂直,则一个平面内,若垂直交线的直线则垂直另一个平面,垂直另一平面内所有直线,若不垂直与交线,也与另一平面内垂直交线的直线及其平行线垂直,也有无数条,故正确.④若两个二面角的两个面分别对应垂直,则这两个二面角关系不确定,如图:在正方体ABCD-A1B1C1D1中,二面角D-AA1-F与二面角D1-DC-A的两个半平面就是分别对应垂直的,但是这两个二面角既不相等,也不互补.故错误..故选:B【题目点拨】本题主要考查了点、线、面的位置关系,还考查了推理论证和理解辨析的能力,属于基础题.9、A【解题分析】
代入即可得结果.【题目详解】解:由已知,故选:A.【题目点拨】本题考查数列的项和项数之间的关系,是基础题.10、B【解题分析】
首先通过正弦定理将边化角,于是求得,于是得到答案.【题目详解】根据正弦定理得:,即,而,所以,又为三角形内角,所以,故选B.【题目点拨】本题主要考查正弦定理的运用,难度不大.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
先根据球的表面积公式求出半径,再根据体积公式求解.【题目详解】设球半径为,则,解得,所以【题目点拨】本题考查球的面积、体积计算,属于基础题.12、【解题分析】
由题中数据,确定课外小组的总人数,以及恰好属于2个小组的人数,人数比即为所求概率.【题目详解】由题意可得,课外小组的总人数为,恰好属于2个小组的人数为,所以随机选取一个成员,他恰好只属于2个小组的概率是.故答案为【题目点拨】本题主要考查古典概型,熟记列举法求古典概型的概率即可,属于常考题型.13、【解题分析】
设,求出的长,由几何概型概率公式计算.【题目详解】设,由题意得,,∴的概率是.故答案为:.【题目点拨】本题考查几何概型,考查长度型几何概型.掌握几何概型概率公式是解题关键.14、【解题分析】
将配凑成,由此化简的表达式,并利用基本不等式求得最小值.【题目详解】由得,所以.当且仅当,即时等号成立.故填:.【题目点拨】本小题主要考查利用基本不等式求和式的最小值,考查化归与转化的数学思想方法,属于中档题.15、【解题分析】
通过可求得x的取值范围,接着利用反正弦函数的定义可得的取值范围.【题目详解】,,即.由反正弦函数的定义可得,即的取值范围为.故答案为:.【题目点拨】本题主要考查余弦函数的定义域和值域,反正弦函数的定义,属于基础题.16、【解题分析】三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解题分析】(1)因为,,故,(2)要证明原命题,只需证明对任意都成立,即只需证明若,显然有成立;若,则显然成立综上,恒成立,即对任意的,(3)由(2)知,若为等差数列,则公差,故n无限增大时,总有此时,即故,即,当时,等式成立,且时,,此时为等差数列,满足题意;若,则,此时,也满足题意;综上,满足题意的的取值范围是.【考点定位】考查数列与函数的综合应用,属难题.18、(Ⅰ);(Ⅱ)【解题分析】
(1)先由,结合正弦定理,得到,再由,即可求出结果;(2)由余弦定理得到,进而可求出三角形的面积.【题目详解】解:(1)∵∴∴∴∴∵∴;(2)在中,,由余弦定理知∴∴【题目点拨】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.19、(1)证明见解析(2).(3)存在,PN.【解题分析】
(1)只需证明AB⊥面PMC,即可证明AB⊥PC;(2)由PM⊥面ABCD得∠PDM为PD与平面ABCD所成角,解△PDM即可求得PD与平面ABCD所成角的正弦值.(3)设DB∩MC=E,连接NE,可得PB∥NE,.即可.【题目详解】(1)证明:∵△PAB是边长为2的等边三角形,点M为AB的中点,∴PM⊥AB.∵ABCD为菱形,∠ABC=60°.∴CM⊥AB,且PM∩MC=M,∴AB⊥面PMC,∵PC⊂面PMC,∴AB⊥PC;(2)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PM⊥AB.∴PM⊥面ABCD,∴∠PDM为PD与平面ABCD所成角.PM,MD,PDsin∠PMD,即PD与平面ABCD所成角的正弦值为.(3)设DB∩MC=E,连接NE,则有面PBD∩面MNC=NE,∵PB∥平面MNC,∴PB∥NE.∴.线段PD上存在点N,使得PB∥平面MNC,且PN.【题目点拨】本题考查了面面垂直的性质定理、线面垂直的判定定理、线面角,利用线面平行的性质定理确定点N的位置是关键,属于中档题..20、(1);(2).【解题分析】
(1)利用点到直线的距离公式得到圆心到直线的距离,利用直线截圆得到的弦长公式可得半径r,从而得到圆的方程;(2)由已知可得直线l1恒过定点P(1,1),设MN的中点Q(x,y),由已知可得,利用两点间的距离公式化简可得答案.【题目详解】(1)根据题意,圆的圆心为(0,0),半径为r,则圆心到直线l的距离,若直线截圆所得的弦长为,则有,解可得,则圆的方程为;(2)直线l1的方程为,即,则有,解得,即P的坐标为(1,1),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度某公司电子商务事业部跨境电商营销推广合作协议2篇
- 2025版融创集团房地产合同档案安全保护与保密要求3篇
- 二零二五年度外汇期货居间经纪业务合同修订版4篇
- 2025版全新煤炭居间合作协议范本下载6篇
- 个性化劳动协议模板2024年版参考版B版
- 个性化咨询顾问服务协议精简版版
- 2025年配电工程进度款支付合同
- 2025年度新材料研发与产业化合作协议
- 二零二五年度内退员工离职补偿及经济补偿合同
- 二零二五年度品牌策划与品牌维权服务合同2篇
- 机电安装工程安全管理
- 2024年上海市第二十七届初中物理竞赛初赛试题及答案
- 信息技术部年终述职报告总结
- 高考满分作文常见结构完全解读
- 理光投影机pj k360功能介绍
- 六年级数学上册100道口算题(全册完整版)
- 八年级数学下册《第十九章 一次函数》单元检测卷带答案-人教版
- 帕萨特B5维修手册及帕萨特B5全车电路图
- 小学五年级解方程应用题6
- 年月江西省南昌市某综合楼工程造价指标及
- 作物栽培学课件棉花
评论
0/150
提交评论