版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届西藏自治区拉萨市城关区拉萨中学数学高一下期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则和的值分别为A.5,5 B.3,5 C.3,7 D.5,72.已知点,直线过点,且与线段相交,则直线的斜率满足()A.或 B.或 C. D.3.若,则一定有()A. B. C. D.4.若某市所中学参加中学生合唱比赛的得分用茎叶图表示(如图),其中茎为十位数,叶为个位数,则这组数据的中位数是()A.91 B.91.5C.92 D.92.55.直线x+2y﹣3=0与直线2x+ay﹣1=0垂直,则a的值为()A.﹣1 B.4 C.1 D.﹣46.在中,是的中点,,,相交于点,若,,则()A.1 B.2 C.3 D.47.设,则A.-1 B.1 C.ln2 D.-ln28.设,则下列结论正确的是()A. B. C. D.9.如图,正方形的边长为a,以A,C为圆心,正方形边长为半径分别作圆,在正方形内随机取一点,则此点取自阴影部分的概率是()A.2-π2 B.2-π310.在中,,则的形状是()A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰或直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.一个扇形的半径是,弧长是,则圆心角的弧度数为________.12.在中,为边中点,且,,则______.13.省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌粒种子中抽取粒进行检测,现将这粒种子编号如下,,,,若从随机数表第行第列的数开始向右读,则所抽取的第粒种子的编号是.(下表是随机数表第行至第行)84421753315724550688770474476721763350258392120676630163785916955567199810507175128673580744395238793321123429786456078252420744381551001342996602795414.直线与圆交于两点,若为等边三角形,则______.15.某中学初中部共有名老师,高中部共有名教师,其性别比例如图所示,则该校女教师的人数为__________.16.已知一组数据、、、、、,那么这组数据的平均数为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求证:;(2)若角满足,求锐角的取值范围.18.如图,在三棱柱中,各个侧面均是边长为的正方形,为线段的中点.(1)求证:直线平面;(2)求直线与平面所成角的余弦值;(3)设为线段上任意一点,在内的平面区域(包括边界)是否存在点,使,并说明理由.19.某高中非毕业班学生人数分布情况如下表,为了了解这2000个学生的体重情况,从中随机抽取160个学生并测量其体重数据,根据测量数据制作了下图所示的频率分布直方图.(1)为了使抽取的160个样品更具代表性,宜采取分层抽样,请你给出一个你认为合适的分层抽样方案,并确定每层应抽取的样品个数;(2)根据频率分布直方图,求的值,并估计全体非毕业班学生中体重在内的人数;(3)已知高一全体学生的平均体重为,高二全体学生的平均体重为,试估计全体非毕业班学生的平均体重.20.如图,在四棱锥中,平面平面,四边形为矩形,,点,分别是,的中点.求证:(1)直线∥平面;(2)平面平面.21.设函数.(1)若,解不等式;(2)若对一切实数,恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
利用茎叶图、中位数、平均数的性质直接求解.【题目详解】由茎叶图得:∵甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,∴65=60+y,解得y=5,∵平均值也相等,∴,解得x=1.故选B.【题目点拨】本题考查实数值的求法,考查茎叶图、中位数、平均数的性质等基础知识,考查运算求解能力,是基础题.2、A【解题分析】
画出三点的图像,根据的斜率,求得直线斜率的取值范围.【题目详解】如图所示,过点作直线轴交线段于点,作由直线①直线与线段的交点在线段(除去点)上时,直线的倾斜角为钝角,斜率的范围是.②直线与线段的交点在线段(除去点)上时,直线的倾斜角为锐角,斜率的范围是.因为,,所以直线的斜率满足或.故选:A.【题目点拨】本小题主要考查两点求斜率的公式,考查数形结合的数学思想方法,考查分类讨论的数学思想方法,属于基础题.3、C【解题分析】
由题,可得,且,即,整理后即可得到作出判断【题目详解】由题可得,则,因为,则,,则有,所以,即故选C【题目点拨】本题考查不等式的性质的应用,属于基础题4、B【解题分析】试题分析:中位数为中间的一个数或两个数的平均数,所以中位数为考点:茎叶图5、A【解题分析】
由两直线垂直的条件,列出方程即可求解,得到答案.【题目详解】由题意,直线与直线垂直,则满足,解得,故选:A.【题目点拨】本题主要考查了两直线位置关系的应用,其中解答中熟记两直线垂直的条件是解答的关键,着重考查了推理与运算能力,属于基础题.6、D【解题分析】由题意知,所以,解得,所以,故选D.7、C【解题分析】
先把化为,再根据公式和求解.【题目详解】故选C.【题目点拨】本题考查对数、指数的运算,注意观察题目之间的联系.8、B【解题分析】
利用不等式的性质,即可求解,得到答案.【题目详解】由题意知,根据不等式的性质,两边同乘,可得成立.故选:B.【题目点拨】本题主要考查了不等式的性质及其应用,其中解答中熟记不等式的基本性质是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解题分析】
将阴影部分拆分成两个小弓形,从而可求解出阴影部分面积,根据几何概型求得所求概率.【题目详解】如图所示:阴影部分可拆分为两个小弓形则阴影部分面积:S正方形面积:S=∴所求概率P=本题正确选项:D【题目点拨】本题考查利用几何概型求解概率问题,属于基础题.10、B【解题分析】
将,分别代入中,整理可得,即可得到,进而得到结论【题目详解】由题可得,即在中,,,即又,是直角三角形,故选B【题目点拨】本题考查三角形形状的判定,考查和角公式,考查已知三角函数值求角二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】
直接根据弧长公式,可得.【题目详解】因为,所以,解得【题目点拨】本题主要考查弧长公式的应用.12、0【解题分析】
根据向量,,取模平方相减得到答案.【题目详解】两个等式平方相减得到:故答案为0【题目点拨】本题考查了向量的加减,模长,意在考查学生的计算能力.13、1【解题分析】试题分析:依据随机数表,抽取的编号依次为785,567,199,1.第四粒编号为1.考点:随机数表.14、或【解题分析】
根据题意可得圆心到直线的距离为,根据点到直线的距离公式列方程解出即可.【题目详解】圆,即,圆的圆心为,半径为,∵直线与圆交于两点且为等边三角形,∴,故圆心到直线的距离为,即,解得或,故答案为或.【题目点拨】本题主要考查了直线和圆相交的弦长公式,以及点到直线的距离公式,考查运算能力,属于中档题.15、【解题分析】
由初中部、高中部男女比例的饼图,初中部女老师占70%,高中部女老师占40%,分别算出女老师人数,再相加.【题目详解】初中部女老师占70%,高中部女老师占40%,该校女教师的人数为.【题目点拨】考查统计中读图能力,从图中提取基本信息的基本能力.16、【解题分析】
利用平均数公式可求得结果.【题目详解】由题意可知,数据、、、、、的平均数为.故答案为:.【题目点拨】本题考查平均数的计算,考查平均数公式的应用,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】
(1)根据函数的解析式化简计算可得出;(2)由(1)得,由,可得,并推导出函数为上的增函数,可得出,由为锐角可得出,由此可得出锐角的取值范围.【题目详解】(1),;(2)任取、,且,,,,,所以,函数是上的增函数,由(1)知:即,由,得,又,即有,故有,即,为锐角,则,,的取值范围是.【题目点拨】本题考查利用解析式化简计算,同时也考查了利用函数的单调性解不等式,涉及三角不等式的求解,考查计算能力,属于中等题.18、(1)见解析(2)(3)存在点,使,详见解析【解题分析】
(1)设与的交点为,证明进而证明直线平面.(2)先证明直线与平面所成角的为,再利用长度关系计算.(3)过点作,证明平面,即,所以存在.【题目详解】(1)设与的交点为,显然为中点,又点为线段的中点,所以,平面,平面,平面.(2)平面,平面,,,平面,平面,平面,点在平面上的投影为点,直线与平面所成角的为,,,,.(3)过点作,又因为平面,平面,所以,平面,平面,平面,,所以存在点,使.【题目点拨】本题考查了立体几何线面平行,线面夹角,动点问题,将线线垂直转化为线面垂直是解题的关键.19、(1)见解析;(2);1350人;(3)平均体重为.【解题分析】
(1)考虑到体重应与年级及性别均有关,最合理的分层应分为以下四层:高一男生,高一女生,高二男生,高二女生,高一男44人,高一女52人,高二男34人,高二女30人,由此能求出结果.(2)体重在之间的学生人数的率,从而,体重在,内人数的频率为0.675,由此能求出估计全体非毕业班学生体重在,内的人数.(3)设高一全体学生的平均体重为:,频率为,高二全体学生的平均体重为,频率为,由此能估计全体非毕业班学生的平均体重.【题目详解】(1)考虑到体重应与年级及性别均有关,最合理的分层应分为以下四层:高一男生、高一女生、高二男生、高二女生高一男:人,高一女:人高二男:,高二女:人可能的方案一:按性别分为两层,男生与女生男生人数:人,女生人数:人可能的方案二:按年级分为两层,高一学生与高二学生高一人数:人,高二人数:人(2)体重在70-80之间学生人数的频率:体重在内人数的频率为:∴估计全体非毕业班学生体重在内的人数为:人(3)设高一全体学生的平均体重为,频率为高二全体学生的平均体重为,频率为则估计全体非毕业班学生平均体重为答:估计全校非毕业班学生平均体重为.【题目点拨】本题考查频率分布直方图、频率、分层抽样、平均数等基础知识,考查运算求解能力,属于基础题.20、(1)见解析(2)见解析【解题分析】
(1)取中点,连接,,证得,利用线面平行的判定定理,即可证得直线∥平面;(2)利用线面垂直的判定定理,证得,再利用面面垂直的判定定理,即可得到平面平面.【题目详解】(1)取中点,连接,.在中,,分别为,中点,则且,又四边形为矩形,为中点,且,所以,故四边形为平行四边形,从而,又,,所以直线.(2)因为矩形,所以,又平面,面,,所以,又,则,又,,所以,又,所以平面平面.【题目点拨】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年化工贷款协议
- 2025年美容美发服务销售担保合同书规范文本2篇
- 二零二五年度租赁住宅装修合同标准范本2篇
- 二零二五版办公场所租赁合同附带增值服务协议3篇
- 二零二五版企业股权托管与增值服务合同2篇
- 重庆市二零二五年汽车租赁合同范本6篇
- 2025装工程总承包合同
- 二零二五版官方铣刨料生产废料回收利用合同3篇
- 新技术环境下的安全教育培训课程设计研究
- 二零二五年度环保产业个人合伙投资合同样本3篇
- 2024义务教育体育与健康课程标准(2022年版)必考题库及答案
- 工业机器人控制器:FANUC R-30iB:机器人实时监控与数据采集技术教程
- 墓地销售计划及方案设计书
- 新加坡留学完整版本
- 劳务服务合作协议书范本
- 优佳学案七年级上册历史
- 中医五脏心完整版本
- 智能音箱方案
- 铝箔行业海外分析
- 京东商城物流配送现状及对策分析
- 超市连锁行业招商策划
评论
0/150
提交评论