版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省泸县二中数学高一第二学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为()A.30° B.45° C.60° D.90°2.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.93.若,且,则的值是()A. B. C. D.4.已知两点,,直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.或5.已知中,,,,那么角等于()A. B. C.或 D.6.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为7.已知平面向量,,,,且,则向量与向量的夹角为()A. B. C. D.8.函数的最大值为A.4 B.5 C.6 D.79.设向量满足,且,则向量在向量方向上的投影为A.1 B. C. D.10.数列{an}中a1=﹣2,an+1=1,则a2019的值为()A.﹣2 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某校选修“营养与卫生”课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法从这70名学生中抽取一个样本,已知在高二年级的学生中抽取了8名,则在该校高一年级的学生中应抽取的人数为________.12.已知角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,则______.13.正方体中,异面直线和所成角的余弦值是________.14.在锐角中,角、、所对的边为、、,若的面积为,且,,则的弧度为__________.15.已知,且是第一象限角,则的值为__________.16.半径为的圆上,弧长为的弧所对圆心角的弧度数为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数在一个周期内的图像经过点和点,且的图像有一条对称轴为.(1)求的解析式及最小正周期;(2)求的单调递增区间.18.在平面直角坐标系xOy中,曲线与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由;(2)求证:过A,B,C三点的圆过定点,并求出该定点的坐标.19.如图,在平面直角坐标系xoy中,锐角和钝角的终边分别与单位圆交于A,B两点.(1)若点A的纵坐标是点B的纵坐标是,求的值;(2)若,求的值.20.已知两点,.(1)求直线AB的方程;(2)直线l经过,且倾斜角为,求直线l与AB的交点坐标.21.已知圆C的方程是(x-1)2+(y-1)2=4,直线l的方程为y=x+m,求当m为何值时,(1)直线平分圆;(2)直线与圆相切.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】连接,由三角形中位线定理及平行四边形性质可得,所以是与所成角,由正方体的性质可知是等边三角形,所以,与所成角是,故选C.2、A【解题分析】
根据求解.【题目详解】由题得.故选:A【题目点拨】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.3、A【解题分析】
对两边平方,可得,进而可得,再根据,可知,由此即可求出结果.【题目详解】因为,所以,所以,所以,又,所以所以.故选:A.【题目点拨】本题主要考查了同角的基本关系,属于基础题.4、D【解题分析】
作出示意图,再结合两点间的斜率公式,即可求得答案.【题目详解】,,又直线过点且与线段相交,作图如下:则由图可知,直线的斜率的取值范围是:或.故选:D【题目点拨】本题借直线与线段的交点问题,考查两点间的斜率公式,考查理解辨析能力,属于中档题.5、B【解题分析】
先由正弦定理求出,进而得出角,再根据大角对大边,大边对大角确定角.【题目详解】由正弦定理得:,,∴或,∵,∴,∴,故选B.【题目点拨】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.6、C【解题分析】
A.时无最小值;
B.令,由,可得,即,令,利用单调性研究其最值;
C.令,令,利用单调性研究其最值;
D.当时,,无最小值.【题目详解】解:A.时无最小值,故A错误;
B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;
D.当时,,无最小值,故D不正确.
故选:C.【题目点拨】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.7、B【解题分析】
根据可得到:,由此求得;利用向量夹角的求解方法可求得结果.【题目详解】由题意知:,则设向量与向量的夹角为则本题正确选项:【题目点拨】本题考查向量夹角的求解,关键是能够通过平方运算将模长转变为向量的数量积,从而得到向量的位置关系.8、B【解题分析】试题分析:因为,而,所以当时,取得最大值5,选B.【考点】正弦函数的性质、二次函数的性质【名师点睛】求解本题易出现的错误是认为当时,函数取得最大值.9、D【解题分析】
先由题中条件,求出向量的数量积,再由向量数量积的几何意义,即可求出投影.【题目详解】因为,,所以,所以,故向量在向量方向上的投影为.故选D【题目点拨】本题主要考查平面向量的数量积,熟记平面向量数量积的几何意义即可,属于常考题型.10、B【解题分析】
根据递推公式,算出即可观察出数列的周期为3,根据周期即可得结果.【题目详解】解:由已知得,,,
,…,,
所以数列是以3为周期的周期数列,故,
故选:B.【题目点拨】本题考查递推数列的直接应用,难度较易.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解题分析】
利用分层抽样的定义求解.【题目详解】设从高一年级的学生中抽取x名,由分层抽样的知识可知,解得x=6.故答案为6.【题目点拨】本题主要考查分层抽样,意在考查学生对该知识的掌握水平和分析推理能力.12、【解题分析】
利用三角函数的定义可求出的值.【题目详解】由三角函数的定义可得,故答案为.【题目点拨】本题考查利用三角函数的定义求余弦值,解题的关键就是三角函数定义的应用,考查计算能力,属于基础题.13、【解题分析】
由,可得异面直线和所成的角,利用直角三角形的性质可得结果.【题目详解】因为,所以异面直线和所成角,设正方体的棱长为,则直角三角形中,,,故答案为.【题目点拨】本题主要考查异面直线所成的角,属于中档题题.求异面直线所成的角的角,先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.14、【解题分析】
利用三角形的面积公式求出的值,结合角为锐角,可得出角的弧度数.【题目详解】由三角形的面积公式可知,的面积为,得,为锐角,因此,的弧度数为,故答案为.【题目点拨】本题考查三角形面积公式的应用,考查运算求解能力,属于基础题.15、;【解题分析】
利用两角和的公式把题设展开后求得的值,进而利用的范围判断的范围,利用同角三角函数的基本关系求得的值,最后利用诱导公式和对原式进行化简,把的值和题设条件代入求解即可.【题目详解】,,即,,两边同时平方得到:,解得,是第一象限角,,得,,即为第一或第四象限,,.故答案为:.【题目点拨】本题考查了两角差的余弦公式、诱导公式以及同角三角函数的基本关系,需熟记三角函数中的公式,属于中档题.16、【解题分析】
根据弧长公式即可求解.【题目详解】由弧长公式可得故答案为:【题目点拨】本题主要考查了弧长公式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】
(1)由函数的图象经过点且f(x)的图象有一条对称轴为直线,可得最大值A,且能得周期并求得ω,由五点法作图求出的值,可得函数的解析式.(2)利用正弦函数的单调性求得f(x)的单调递增区间.【题目详解】(1)函数f(x)=Asin(ωx+)(A>0,ω>0,)在一个周期内的图象经过点,,且f(x)的图象有一条对称轴为直线,故最大值A=4,且,∴,∴ω=1.所以.因为的图象经过点,所以,所以,.因为,所以,所以.(2)因为,所以,,所以,,即的单调递增区间为.【题目点拨】本题主要考查由函数y=Asin(ωx+)的性质求解析式,通常由函数的最大值求出A,由周期求出ω,由五点法作图求出的值,考查了正弦型函数的单调性问题,属于基础题.18、(1)存在,(2)证明见解析,圆方程恒过定点或【解题分析】
(1)将曲线Γ方程中的y=1,得x2﹣mx+2m=1.利用韦达定理求出C,通过坐标化,求出m得到所求圆的方程.(2)设过A,B,C的圆P的方程为(x﹣a)2+(y﹣b)2=r2列出方程组利用圆系方程,推出圆P方程恒过定点即可.【题目详解】由曲线Γ:y=x2﹣mx+2m(m∈R),令y=1,得x2﹣mx+2m=1.设A(x1,1),B(x2,1),则可得△=m2﹣8m>1,x1+x2=m,x1x2=2m.令x=1,得y=2m,即C(1,2m).(1)若存在以AB为直径的圆过点C,则,得,即2m+4m2=1,所以m=1或.由△>1,得m<1或m>8,所以,此时C(1,﹣1),AB的中点M(,1)即圆心,半径r=|CM|故所求圆的方程为.(2)设过A,B,C的圆P的方程为(x﹣a)2+(y﹣b)2=r2满足代入P得展开得(﹣x﹣2y+2)m+x2+y2﹣y=1当,即时方程恒成立,∴圆P方程恒过定点(1,1)或.【题目点拨】本题考查圆的方程的应用,圆系方程恒过定点的求法,考查转化思想以及计算能力.19、(1);(2)【解题分析】
(1)根据三角函数的定义,求出对应的正弦和余弦值,用正弦的和角公式即可求解;(2)根据题意,先计算出的值,再求解.【题目详解】(1)由三角函数的定义得,,.由角、的终边分别在第一和第二象限,得:,,所以;(2),则根据,即可得,解得:..故.【题目点拨】本题考查三角函数的定义,以及由向量的数量积计算模长,属基础题.20、(1);(2).【解题分析】
(1)根据、两点的坐标,得到斜率,再由点斜式得到直线方程;(2)根据的倾斜角和过点,得到的方程,再与直线联立,得到交点坐标.【题目详解】(1)因为点,,所以,所以方程为,整理得;(2)因为直线l经过,且倾斜角为,所以直线的斜率为,所以的方程为,整理得,所以直线与直线的交点为,解得,所以交点坐标为.【题目点拨】本题考查点斜式求直线方程,求直线的交点坐标,属于简单题.21、(1)m=0;(2)m=±2.【解题分析】试题分析:(1)直线平分圆,即直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中考物理复习主题单元7第17课时功、功率课件
- 冀少版八年级生物上册第四单元第三节先天性行为和学习行为课件
- 《两个好朋友》教案
- 港口维修土石方施工合同
- 产权式酒店交易样本
- 六年级信息技术上册教案
- 公共服务设施资金监管
- 文化艺术品合格证管理办法
- 农产品竞拍活动拍卖师协议
- 文化产品运输协议
- 牦牛主要疾病的防控进展及发展趋势讲义课件
- 高考语文 如何读懂诗歌 课件(32张PPT)
- 中压交联电缆电缆正、负和零序计算
- 3C战略三角模型
- 民间艺术团管理规章制度
- 高标准农田建设示范工程质量管理体系与措施
- 学生顶岗实习安全教育课件
- 公司组织架构图模板课件
- 辽宁省葫芦岛市各县区乡镇行政村村庄村名居民村民委员会明细
- 百合干(食品安全企业标准)
- 咨询服务合同之补充协议
评论
0/150
提交评论