版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Oligopoly
theory
is
one
of
the
oldest
branches
of
mathematical
economics
datedback
to
1838
when
its
basic
model
was
proposed
by
French
economist
CournotI.
The
Cournot
duopoly
Kopel
ModelIn
the
recent
literatures,
it
is
also
demonstrated
that
the
oligopolistic
marketsmay
become
chaotic.Among
the
first
who
have
shown
the
Cournot
model
may
lead
to
complexbehavior,
such
as
periodic
and
chaotic
behavior,
was
Puu
[9][10]
.T.
Puu,
Chaos
in
duopoly
pricing,
Chaos
Solitons
Fractals
1
(1991)
573-581.T.
Puu,
The
chaotic
duopolists
revisited,
J.
Econom,
Behav.
Organ.
33
(1998)
385-394In
this
work,
we
consider
a
general
case
of
a
duopoly
model:The
Cournot
duopoly
Kopel
Model
[11][11]
Kopel,
M.,
”Simplex
and
Complex
Adjustment
Dynamics
in
Cournot
DuopolyModels,”
Chaos,
Solitions
and
Fractals,
7,
2031-2048,1996.1I.
The
Cournot
duopoly
Kopel
Model☺Previous
work:Analyzing
chaotic
behaviornumerically☺Our
work:A
rigorous
proof
for
existence
of
chaos
frommathematicalpoint
of
view
isgiven.Two
different
types
of
intermittent
chaos
in
this
model
are
foundand
analyzed.23混沌经济学Day于1982年将非线性动态引入到经济学中,引发了人们对传统经济学的反思,为人们提供了崭新的视角宏观经济中存在混沌现象在微观经济学领域,厂商或者其他经济个体所经营产品的价格、生产或销售的产品数量都可能产生波动,呈现出混沌动态4.1
一个古诺双寡头经济模型描述X和Y代表两个寡头厂商厂商X和厂商Y在t+1时间段生产的产品数量分别用x(t+1)和y(t+1)表示Nash平衡点:古诺双寡头Kopel经济模型[7][7]
Kopel
M.
Chaos,
Solitons
&
Fractals,
1996,
7:
2031~204844.2
分形分析分形图:平衡点周期混沌平衡点混沌周期,5光滑经济周期非光滑经济周期混沌由光滑经济周期演变为混沌:64.2
分形分析混沌吸引子共存现象两个共存的混沌吸引子7吸引域由于对称性,混沌吸引子共存现象普遍存在4.2
分形分析4.3
混沌吸引子的计算机辅助证明将双寡头Kopel模型改写为向量形式:其中:的研究映射 动态(
:)定义为 以此类推得到:,84.3
混沌吸引子的计算机辅助证明定理Kopel经济模型具有如下性质:关于四边形的映射 存在一个闭的不变集 ,使得与2个符号的移位映射半共轭,且因此,当 时,古诺双寡头Kopel经济模型有正拓扑熵。94.4
间歇混沌特性分析PM-I型间歇混沌:分形图104.4
间歇混沌特性分析分岔前后x的时间序列分岔前,分岔后,过渡混沌116倍周期点4.4
间歇混沌特性分析结论:服从幂指数为-0.496的幂律分布PM-I型间歇混沌:层流态平均持续时间分布幂指数特征值:
-0.512诱发激变导致的间歇混沌:4.4
间歇混沌特性分析分形图发生激变前,发生激变前,发生激变后,发生激变后,134.4
间歇混沌特性分析结论:服从幂指数为-0.65的幂律分布诱发激变导致的间歇混沌:层流态平均持续时间分布幂指数特征值:
[-3/2,-1/2]1415在经济学系统中出现的间歇混沌现象可以解释为系统本身具有调节机制,不借助于任何外力,系统总是能够将混乱的市场调整回
(相对)平稳状态或者解释为系统有记忆机制,总是能够记住混乱前的状态并恢复4.4
间歇混沌特性分析4.5
长期平均利润分析混沌能否带来更多的利润?混沌动态的平均利润:非零平衡点:164.5
长期平均利润分析结论:混沌市场并不是完全有害的174.6
控制混沌到Nash平衡点定理考虑受控的古诺双寡头Kopel经济模型,平衡点
是局部渐近稳定的,当且仅当稳健的经济市场仍然是人们最需要的184.6
控制混沌到Nash平衡点)仿真结果(令19小结:重点研究了一个古诺双寡头经济模型中的各种混沌动态,从理论上证明了混沌存在性,并分析了混沌对利润的影响,得到了混沌并非完全有害的结论四、经济系统中的混沌动态研究20Remarks:Both
firms
must
consider
the
actions
and
reactions
of
thecompetitorThe
competitors
have
choose
their
actionssimultaneouslyEach
firm
forms
the
expectation
on
the
quantity
of
the
other
firm,
whichdepend
on
their
own
quantity
and
the
quantity
of
the
other
firm
bothproduced
in
the
previous
period,
in
order
to
determine
a
profitmaximizingquantity
to
produce
in
the
nextperiod.I.
The
Cournot
duopoly
Kopel
ModelModel
descriptionConsider
two
firms
X
andY:(1)Where, denote
the
goods
quantities
that
firm
X
and
firm
Y
producein
period
t,
respectively.21I.
The
Cournot
duopoly
Kopel
ModelNash-equilibria
of
the
KopelmodelThe
fixed
points
(Nash-equilibrium
)
of
system
(1)
satisfy
theequations:(2)The
solutions
of
Eq.
(2)
give
four
equilibria:ⅰ
ⅱⅲforⅳforRemark:
The
fixed
points
depend
on .
In
case
ⅱ,
we
should
have(positive
solution).Also,
in
case
ⅲ
and
ⅳ,
we
should
have (real
solution).22bifurcation
diagram
provides
a
general
view
of
the
evolution
process
of
the
dynamicalbehaviors
by
plotting
a
state
variable
with
the
abscissa
being
one
parameterI.
The
Cournot
duopoly
Kopel
ModelBifurcation
analysisbifurcation
diagram:
rich
and
complexdynamicsFig.
1
Bifurcation
diagram.
(a)
Fix,and.(b)Fixand(b)(a)23I.
The
Cournot
duopoly
Kopel
ModelObservation
of
chaotic
attractors
and
basins
of
attractionSmooth
CycleLost
ofSmoothnessChaoticFig.
2
Different
attractors
in
Kopel
model.
(a)
One
smooth
invariant
cyclewith,..
(c)
Chaotic
attractor
with(b)
Invariant
cycle
loses
its
smoothnesswhen
,.(a)24(b)(c)I.
The
Cournot
duopoly
Kopel
ModelCoexistence
of
two
chaotic
attractors:Fig.
3
Two
chaotic
attractors
coexist
with
different
initial
conditions
when
.(a)
Phase
portraits
of
the
two
chaotic
attractors
and
the
four
Nash
equilibria;
(b)
The
basins
ofattractions.(a)25(b)I.
The
Cournot
duopoly
Kopel
ModelHorseshoe
Chaos
in
the
modelA
convenient
expression
for
the
Kopel
model
is
described
as
follows:(3)whereAfter
a
great
many
trial
attempts,
we
will
discuss
the
dynamics
of
system
(3)with under
the
map and
obtain
that
there
exists
ahorseshoe
in
this
attractor.26We
take
a
proper
quadrangle
|ABCD|
to
be
a
subset
in
the
plane
with
its
four
verticesbeingI.
The
Cournot
duopoly
Kopel
ModelFig.
4
The
attractor
whenand
the
proper
quadrangle.27Fig.
5.
Thequadrangleand
its
image.I.
The
Cournot
duopoly
Kopel
Modelcorresponding
to
the
quadranglefor
which,
there
is
semi-conjugateTheorem
1.
For
the
mapexists
a
closed
invariant
setto
the
2-shift
map.Hence,.28I.
The
Cournot
duopoly
Kopel
ModelProof.We
select
two
appropriate
subsets
inthe
yellow
quadrangle
in
Fig.
6,
with
andThen
under
the
map
, is
mapped
to.
The
first
one
is
denoted
by
a
as
shownbe
its
left
and
right
edge,
respectively.which
is
on
the
right
side
of
the
edge
,and is
mapped
to which
is
on
the
left
side
of
the
edge.To
prove
the
above
theorem,
we
should
find
two
mutually
disjointed
subsets
ofsuch
that
there
exists
a -connected
family
with
respect
to
them.Fig.
6
Thesubsetand
its
image
under
the
mapwith.29I.
The
Cournot
duopoly
Kopel
Model,The
second
subset
is
the
purple
quadrangle,
denoted
by
b,
as
shown
in
Fig.
7.
Takeand to
be
the
left
and
right
edge
of
b,
respectively.
Then
theimageis
on
the
left
side
of
the
edge and
theimage is
on
the
right
side
oftheedge
.Fig.
7
Thesubsetand
its
image
under
the
mapwith.30I.
The
Cournot
duopoly
Kopel
ModelUpon
the
above
simulation
results,
it
is
easy
to
see
that
the
subset
a
and
b
are
disjointedand
it
follows
that
for
every
connection
v
with
respect
toa
and
b,
theimagesand lie
wholly
across
the
quadrangles ,
that
is
to
say,
theimagesand are
still
connections
with
respect
to
a
and
b.
According
totopological
horseshoe
Theorem,
there
exists
a -connected
family,
which
meansthatis
semi-conjugate
to
the
2-shift
map.
Hence,
based
on
the
Lemma,
we
know
that
th
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 柳州工学院《分析型大数据系统》2023-2024学年第一学期期末试卷
- 2024年度吊车设备租赁与工程结算服务合同汇编3篇
- 2024年度个人住房按揭担保贷款合同细则2篇
- 2024年度机场车站代管保安人员服务合同2篇
- 八年级英语下册 Module 1 Feelings and impressions Unit 2 I feel nervous when I speak Chinese第四课时教学实录(新版)外研版
- 2023一年级数学下册 三 认识100以内的数(练习五)教学实录 苏教版
- 房屋抵押担保借款合同
- 2024至2030年中国煤气柜外壁防腐面漆行业投资前景及策略咨询研究报告
- 2024至2030年中国玻璃钢配铁架靠背椅行业投资前景及策略咨询研究报告
- 2024年白酒企业融资租赁与投资合同3篇
- 2024年荆州市产业投资发展集团有限公司招聘笔试参考题库附带答案详解
- Unit2Whattimedoyougotoschool?大单元整体教学设计人教版七年级英语下册
- 建筑防雷与接地-等电位连接
- 2024行政法与行政诉讼法论述题
- 国际货运代理业现状及发展对策分析-以KX公司为例
- 施工现场安全文明施工管理处罚细则
- 重庆洪崖洞旅游营销策划
- 消费者调查访谈提纲模板
- 山东建筑大学混凝土结构原理期末考试复习题
- 消化道肿瘤的诊断和治疗
- 护理病例报告范文5篇
评论
0/150
提交评论