版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省容城博奥学校高一数学第二学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为研究需要,统计了两个变量x,y的数据·情况如下表:其中数据x1、x2、x3…xn,和数据y1、y2、y3,…yn的平均数分别为和,并且计算相关系数r=-1.8,回归方程为,有如下几个结论:①点(,)必在回归直线上,即=b+;②变量x,y的相关性强;③当x=x1,则必有;④b<1.其中正确的结论个数为A.1 B.2 C.3 D.42.已知关于的不等式对任意恒成立,则的取值范围是()A. B.C. D.3.某赛季中,甲、乙两名篮球队员各场比赛的得分茎叶图如图所示,若甲得分的众数为15,乙得分的中位数为13,则()A.15 B.16 C.17 D.184.是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地11月1日到10日日均值(单位:)的统计数据,则下列叙述不正确的是()A.这天中有天空气质量为一级 B.这天中日均值最高的是11月5日C.从日到日,日均值逐渐降低 D.这天的日均值的中位数是5.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是()A. B.C. D.6.的内角的对边分别为成等比数列,且,则等于()A. B. C. D.7.已知三棱锥O-ABC,侧棱OA,OB,OC两两垂直,且OA=OB=OC=2,则以O为球心且1为半径的球与三棱锥O-ABC重叠部分的体积是()A.π8 B.π6 C.π8.函数的图象可能是().A. B. C. D.9.若实数x,y满足条件,则目标函数z=2x-y的最小值()A. B.-1 C.0 D.210.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,将全体正整数排成一个三角形数阵,按照这样的排列规律,第行从右至左的第3个数为___________.12.若为幂函数,则满足的的值为________.13.已知等比数列中,,,则该等比数列的公比的值是______.14.已知函数f(x)的图象恒过定点P,则点P的坐标是____________.15.已知数列中,,当时,,数列的前项和为_____.16.我国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天走的路程为__________里.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)把表示为的形式,并写出函数的最小正周期、值域;(2)求函数的单调递增区间:(3)定义:对于任意实数、,设,(常数),若对于任意,总存在,使得恒成立,求实数的取值范围.18.如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为(1)求的值;(2)求的值.19.甲、乙两台机床同时加工直径为10cm的零件,为了检验零件的质量,从零件中各随机抽取6件测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差(2)根据(1)的计算结果,说明哪一台机床加工的零件更符合要求.20.如图,正方体棱长为,连接,,,,,,得到一个三棱锥,求:(1)三棱锥的表面积与正方体表面积的比值;(2)三棱锥的体积.21.已知和的交点为.(1)求经过点且与直线垂直的直线的方程(2)直线经过点与轴、轴交于、两点,且为线段的中点,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
根据回归方程的性质和相关系数的性质求解.【题目详解】回归直线经过样本中心点,故①正确;变量的相关系数的绝对值越接近与1,则两个变量的相关性越强,故②正确;根据回归方程的性质,当时,不一定有,故③错误;由相关系数知负相关,所以,故④正确;故选C.【题目点拨】本题考查回归直线和相关系数,注意根据回归方程得出的是估计值不是准确值.2、A【解题分析】
分别讨论和两种情况下,恒成立的条件,即可求得的取值范围.【题目详解】当时,不等式可化为,其恒成立当时,要满足关于的不等式任意恒成立,只需解得:.综上所述,的取值范围是.故选:A.【题目点拨】本题考查了含参数一元二次不等式恒成立问题,解题关键是掌握含有参数的不等式的求解,首先需要对二次项系数讨论,注意分类讨论思想的应用,属于基础题.3、A【解题分析】
由图可得出,然后可算出答案【题目详解】因为甲得分的众数为15,所以由茎叶图可知乙得分数据有7个,乙得分的中位数为13,所以所以故选:A【题目点拨】本题考查的是茎叶图的知识,较简单4、D【解题分析】
由折线图逐一判断各选项即可.【题目详解】由图易知:第3,8,9,10天空气质量为一级,故A正确,11月5日日均值为82,显然最大,故B正确,从日到日,日均值分别为:82,73,58,34,30,逐渐降到,故C正确,中位数是,所以D不正确,故选D.【题目点拨】本题考查了频数折线图,考查读图,识图,用图的能力,考查中位数的概念,属于基础题.5、B【解题分析】
设阴影部分正方形的边长为,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率.【题目详解】如图所示,设阴影部分正方形的边长为,则七巧板所在正方形的边长为,由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率,故选:B.【题目点拨】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.6、B【解题分析】
成等比数列,可得,又,可得,利用余弦定理即可得出.【题目详解】解:成等比数列,,又,,则故选B.【题目点拨】本题考查了等比数列的性质、余弦定理,考查了推理能力与计算能力,属于中档题.7、B【解题分析】
根据三棱锥三条侧棱的关系,得到球与三棱锥的重叠部分为球的18【题目详解】∵三棱锥O-ABC,侧棱OA,OB,OC两两互相垂直,且OA=OB=OC=2,以O为球心且1为半径的球与三棱锥O-ABC重叠部分的为球的18即对应的体积为18【题目点拨】本题主要考查球体体积公式的应用,解题的关键就是利用三棱锥与球的关系,考查空间想象能力,属于中等题。8、D【解题分析】
首先判断函数的奇偶性,排除选项,再根据特殊区间时,判断选项.【题目详解】是偶函数,是奇函数,是奇函数,函数图象关于原点对称,故排除A,B,当时,,,排除C.故选D.【题目点拨】本题考查根据函数解析式判断函数图象,一般从函数的定义域确定函数的位置,从函数的值域确定图象的上下位置,也可判断函数的奇偶性,排除图象,或是根据函数的单调性,特征值,以及函数值的正负,是否有极值点等函数性质判断选项.9、A【解题分析】
线性规划问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。【题目详解】可行域如图所示,当目标函数平移到A点时z取最小值,故选A【题目点拨】线性规划中线性的目标函数问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。10、A【解题分析】
正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由题可以先算出第行的最后一个数,再从右至左算出第3个数即可.【题目详解】由图得,第行有个数,故前行一共有个数,即第行最后一个数为,故第行从右至左的第3个数为.【题目点拨】本题主要考查等差数列求和问题,注意从右至左的第3个数为最后一个数减2.12、【解题分析】
根据幂函数定义知,又,由二倍角公式即可求解.【题目详解】因为为幂函数,所以,即,因为,所以,即,因为,所以,.故填.【题目点拨】本题主要考查了幂函数的定义,正弦的二倍角公式,属于中档题.13、【解题分析】
根据等比通项公式即可求解【题目详解】故答案为:【题目点拨】本题考查等比数列公比的求解,属于基础题14、(2,4)【解题分析】
令x-1=1,得到x=2,把x=2代入函数求出定点的纵坐标得解.【题目详解】令x-1=1,得到x=2,把x=2代入函数得,所以定点P的坐标为(2,4).故答案为:(2,4)【题目点拨】本题主要考查对数函数的定点问题,意在考查学生对该知识的理解掌握水平,属于基础题.15、.【解题分析】
首先利用数列的关系式的变换求出数列为等差数列,进一步求出数列的通项公式,最后求出数列的和.【题目详解】解:数列中,,当时,,整理得,即,∴数列是以为首项,6为公差的等差数列,故,所以,故答案为:.【题目点拨】本题主要考查定义法判断等差数列,考查等差数列的前项和,考查运算能力和推理能力,属于中档题.16、192【解题分析】设每天走的路程里数为由题意知是公比为的等比数列∵∴∴故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)(3)【解题分析】
(1)结合二倍角正弦公式和辅助角公式即可化简;(2)结合(1)中所求表达式,正弦型函数单调增区间的通式即可求解;(3)根据题意可得,,求出的值域,列出关于的不等式组,即可求解【题目详解】(1),,值域为;(2)令,解得,所以函数的单调递增区间为,;(3)若对于任意,总存在,使得恒成立,则,,当,即时,,当,即时,,故,所以,解得,所以实数的取值范围是【题目点拨】本题考查三角函数的化简和三角函数的性质应用,函数恒成立问题的转化,属于中档题18、(1)(2)【解题分析】
试题分析:(1)根据题意,由三角函数的定义可得与的值,进而可得出与的值,从而可求与的值就,结合两角和正切公式可得答案;(2)由两角和的正切公式,可得出的值,再根据的取值范围,可得出的取值范围,进而可得出的值.由条件得cosα=,cosβ=.∵α,β为锐角,∴sinα==,sinβ==.因此tanα==7,tanβ==.(1)tan(α+β)===-3.(2)∵tan2β===,∴tan(α+2β)===-1.∵α,β为锐角,∴0<α+2β<,∴α+2β=19、(1)见解析;(2)乙机床加工的零件更符合要求.【解题分析】
(1)直接由平均数和方差的计算公式代入数据进行计算即可.
(2)由平均数和方差各自说明数据的特征,做出判断.【题目详解】(1),,,.(2)因为,,说明甲、乙机床加工的零件的直径长度的平均值相同.且甲机床加工的零件的直径长度波动比较大,
因此乙机床加工的零件更符合要求.【题目点拨】本题考查计算数据的平均数和方差以及根据数据的平均数和方差做出相应的判断,属于基础题.20、(1);(2)【解题分析】试题分析:(1)求出三棱锥的棱长为,即可求出三棱锥的表面积与正方体表面积的比值;(2)利用割补法,即可求出三棱锥的体积.试题解析:(1)正方体的棱长为,则三棱锥的棱长为,表面积为,正方体表面积为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教研汇报总结:以教研为抓手促进“双新”改革有效落地
- 2024年安徽省合肥市规划设计院招聘历年管理单位遴选500模拟题附带答案详解
- 语文三年级下册语文园地八
- 仁果类果树修剪技术创新考核试卷
- 体育运动赛事安全保卫工作考核试卷
- 化妆品生产计划与库存控制考核试卷
- 保健品行业发展趋势预测考核试卷
- 化学纤维制造的物流风险控制与应急管理考核试卷
- 仪器仪表制造业的市场竞争优势与创新能力考核试卷
- 保健品市场细分趋势考核试卷
- 电大本科《西方经济学》期末试题标准题库及答案(试卷号:1026)
- 国开(浙江)2024年秋《中国建筑史(本)》形考作业1-4答案
- 医院检验科实验室生物安全程序文件SOP
- 2024年街道办事处招考编外工作人员考试题库附答案
- 华润电力测评2024题库
- KYT危险预知训练PPT演示课件
- 典型零件的数控加工与仿真及实体造型论文
- T∕CACM 1105-2018 中医治未病技术操作规范 中药药浴
- 医疗器械项目开发设计流程图详图
- 财政系统诗歌朗诵:财政人之歌
- 我的家乡是山西运城ppt
评论
0/150
提交评论