




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省宜春市宜丰中学数学高一下期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在四边形中,如果,,那么四边形的形状是()A.矩形 B.正方形 C.菱形 D.直角梯形2.为了得到函数的图像,只需把函数的图像A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位3.设是平面内的一组基底,则下面四组向量中,能作为基底的是()A.与 B.与C.与 D.与4.已知函数f(x)是定义在上的奇函数,当x>0时,f(x)=2x-3,则A.14B.-114C.5.若,则的概率为()A. B. C. D.6.在平面直角坐标系xoy中,横、纵坐标均为整数的点叫做格点,若函数的图象恰好经过个格点,则称函数为阶格点函数.下列函数中为一阶格点函数的是()A. B. C. D.7.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位8.已知直线3x−y+1=0的倾斜角为α,则A. B.C.− D.9.若正实数,满足,则有下列结论:①;②;③;④.其中正确结论的个数为()A.1 B.2 C.3 D.410.在中,已知,,则为()A.等腰直角三角形 B.等边三角形C.锐角非等边三角形 D.钝角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.一个圆锥的侧面积为,底面积为,则该圆锥的体积为________.12.设等差数列的前项和为,若,,则的值为______.13.设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若,,则q=______________.14.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.15.在中,是斜边的中点,,,平面,且,则_____.16.在梯形中,,,设,,则__________(用向量表示).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若,且,求的值.18.已知数列为等差数列,且满足,,数列的前项和为,且,.(Ⅰ)求数列,的通项公式;(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围.19.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)若,求的值.20.已知数列满足,且(,且).(1)求证:数列是等差数列;(2)求数列的通项公式(3)设数列的前项和,求证:.21.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量单位:吨,将数据按照,,分成9组,制成了如图所示的频率分布直方图.(1)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数说明理由;(2)估计居民月均用水量的中位数.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】试题分析:因为,所以,即四边形的对角线互相垂直,排除选项AD;又因为,所以四边形对边平行且相等,即四边形为平行四边形,但不能确定邻边垂直,所以只能确定为菱形.考点:1.向量相等的定义;2.向量的垂直;2、B【解题分析】试题分析:记函数,则函数∵函数f(x)图象向右平移单位,可得函数的图象∴把函数的图象右平移单位,得到函数的图象,故选B.考点:函数y=Asin(ωx+φ)的图象变换.3、C【解题分析】
利用向量可以作为基底的条件是,两个向量不共线,由此分别判定选项中的两个向量是否共线即可.【题目详解】由是平面内的一组基底,所以和不共线,对应选项A:,所以这2个向量共线,不能作为基底;对应选项B:,所以这2个向量共线,不能作为基底;对应选项D:,所以这2个向量共线,不能作为基底;对应选项C:与不共线,能作为基底.故选:C.【题目点拨】本题主要考查基底的定义,判断2个向量是否共线的方法,属于基础题.4、D【解题分析】试题分析:函数f(x)是定义在上的奇函数,,故答案为D.考点:奇函数的应用.5、C【解题分析】
由,得,当时,即可求出的范围,根据几何概型的公式,即可求解.【题目详解】由,得,当,即当时,,所以的概率为.【题目点拨】本题考查几何概型的公式,属基础题6、A【解题分析】
根据题意得,我们逐个分析四个选项中函数的格点个数,即可得到答案.【题目详解】根据题意得:函数y=sinx图象上只有(0,0)点横、纵坐标均为整数,故A为一阶格点函数;函数没有横、纵坐标均为整数,故B为零阶格点函数;函数y=lgx的图象有(1,0),(10,1),(100,2),…无数个点横、纵坐标均为整数,故C为无穷阶格点函数;函数y=x2的图象有…(﹣1,0),(0,0),(1,1),…无数个点横、纵坐标均为整数,故D为无穷阶格点函数.故选A.【题目点拨】本题考查的知识点是函数的图象与图象变化,其中分析出函数的格点个数是解答本题的关键,属于中档题.7、D【解题分析】
根据三角函数图象的平移变换可直接得到图象变换的过程.【题目详解】因为,所以向右平移个单位即可得到的图象.故选:D.【题目点拨】本题考查三角函数图象的平移变换,难度较易.注意左右平移时对应的规律:左加右减.8、A【解题分析】
由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.【题目详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,
∴,
故选A.【题目点拨】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.9、C【解题分析】
根据不等式的基本性质,逐项推理判断,即可求解,得到答案.【题目详解】由题意,正实数是正数,且,①中,可得,所以是错误的;②中,由,可得是正确的;③中,根据实数的性质,可得是正确的;④中,因为,所以是正确的,故选C.【题目点拨】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的基本性质,合理推理是解答的关键,着重考查了推理与运算能力,属于基础题.10、A【解题分析】
已知第一个等式利用正弦定理化简,再利用诱导公式及内角和定理表示,根据两角和与差的正弦函数公式化简,得到A=B,第二个等式左边前两个因式利用积化和差公式变形,右边利用二倍角的余弦函数公式化简,将A+B=C,A﹣B=0代入计算求出cosC的值为0,进而确定出C为直角,即可确定出三角形形状.【题目详解】将已知等式2acosB=c,利用正弦定理化简得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A与B都为△ABC的内角,∴A﹣B=0,即A=B,已知第二个等式变形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,则△ABC为等腰直角三角形.故选A.【题目点拨】此题考查了正弦定理,两角和与差的正弦公式,二倍角的余弦函数公式,熟练掌握正弦定理是解本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
设圆锥的底面半径为,母线长为,由圆锥的侧面积、圆面积公式列出方程组求解,代入圆锥的体积公式求解.【题目详解】设圆锥的底面半径为,母线长为,其侧面积为,底面积为,则,解得,,∴高===,∴==.故答案为:.【题目点拨】本题考查圆锥的体积的求法,考查圆锥的侧面积、底面积、体积公式等基础知识,考查运算求解能力,属于基础题.12、-6【解题分析】
由题意可得,求解即可.【题目详解】因为等差数列的前项和为,,所以由等差数列的通项公式与求和公式可得解得.故答案为-6.【题目点拨】本题考查了等差数列的通项公式与求和公式,考查了学生的计算能力,属于基础题.13、【解题分析】将,两个式子全部转化成用,q表示的式子.即,两式作差得:,即:,解之得:(舍去)14、.【解题分析】
根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【题目详解】由题意四棱锥的底面是边长为的正方形,侧棱长均为,借助勾股定理,可知四棱锥的高为,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,故圆柱的体积为.【题目点拨】本题主要考查了圆柱与四棱锥的组合,考查了空间想象力,属于基础题.15、【解题分析】
由EC垂直Rt△ABC的两条直角边,可知EC⊥面ABC,再根据D是斜边AB的中点,AC=6,BC=8,可求得CD的长,根据勾股定理可求得DE的长.【题目详解】如图,EC⊥面ABC,而CD⊂面ABC,∴EC⊥CD,∵AC=6,BC=8,EC=12,△ABC是直角三角形,D是斜边AB的中点,∴CD=5,ED1.故答案为1.【题目点拨】本题主要考查了线面垂直的判定和性质定理,利用勾股定理求线段的长度,考查了空间想象能力和推理论证能力,属于基础题.16、【解题分析】
根据向量减法运算得结果.【题目详解】利用向量的三角形法则,可得,,又,,则,.故答案为.【题目点拨】本题考查向量表示,考查基本化解能力三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】
本题首先可根据以及诱导公式得出,然后根据以及同角三角函数关系计算出,最后根据即可得出结果.【题目详解】因为,所以,因为,所以,因为,所以解得,.【题目点拨】本题考查同角三角函数关系的应用,考查的公式有、以及,考查计算能力,是简单题.18、(Ⅰ);(Ⅱ)【解题分析】
(Ⅰ)数列的通项公式,利用,可求公差,然后可求;的通项公式可以利用退位相减法求解;(Ⅱ)求出代入,利用分离参数法可求实数的取值范围.【题目详解】解:(Ⅰ)∵,∴,∴,即,∵,∴,∴,∴,又,也成立,∴是以1为首项,3为公比的等比数列,∴.(Ⅱ),∴对恒成立,即对恒成立,令,,当时,,当时,,∴,故,即的取值范围为.【题目点拨】本题主要考查数列通项公式的求解和参数范围的确定,熟练掌握公式是求解关键,侧重考查数学运算的核心素养.19、(1);(2)4.【解题分析】
(1)运用等差数列的性质求得公差d,再由及d求得通项公式即可.(2)利用前n项和公式直接求解即可.【题目详解】(1)设数列的公差为,∴,故.(2),∴,解得或(舍去),∴.【题目点拨】本题考查等差数列的通项公式及项数的求法,考查了前n项和公式的应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.20、(1)详见解析;(2);(3)详见解析.【解题分析】
(1)用定义证明得到答案.(2)推出(3)利用错位相减法和分组求和法得到,再证明不等式.【题目详解】解:(1)由,得,即.∴数列是以为首项,1为公差的等差数列.(2)∵数列是以为首项,1为公差的等差数列,∴,∴.(3).∴,∴.【题目点拨】本题考查了等差数列的证明,分组求和法,错位相减法,意在考查学生对于数列公式方法的灵活运用.21、(1)3.6万;(2)2.06.【解题分析】
(1)由频率分布直方图的性质,求得,利用频率分布直方图求得月均用水量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深入分析监理工程师试题及答案
- 企业标准化法管理
- 重大节假日的急救准备工作计划
- 提升战略执行力的年度措施计划
- 家长参与教育的有效方式计划
- 传统中医药的推广计划
- 幼儿园项目化学习的设计计划
- 优化仓库库存补货的个人计划
- 2024年银行考试最有效学习路径试题及答案
- 全面提升陪诊师素养试题及答案
- 2024年黑龙江省哈尔滨市中考化学试卷(附答案)
- JJF 2114-2024 矿用二氧化碳气体检测报警器校准规范
- 2024安全生产法律法规知识培训
- 《健康住宅评价标准》
- DB52T 046-2018 贵州省建筑岩土工程技术规范
- 三叉神经病病例分析
- GB/T 19077-2024粒度分析激光衍射法
- (完整版)减数分裂课件
- GB/T 44481-2024建筑消防设施检测技术规范
- 2024年《武器装备科研生产单位保密资格标准》内容考试试题库及答案
- 加强文物古籍保护利用(2022年广东广州中考语文试卷非连续性文本阅读试题及答案)
评论
0/150
提交评论