




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市第156中学2024届高一数学第二学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线过点,且与以为端点的线段总有公共点,则直线斜率的取值范围是()A. B. C. D.2.如图,一个边长为的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入了粒芝麻,经过统计,落在月牙形图案内的芝麻有粒,则这个月牙图案的面积约为()A. B. C. D.3.不等式4xA.-∞,-12C.-∞,-324.若三棱锥的所有顶点都在球的球面上,平面,,,且三棱锥的体积为,则球的体积为()A. B. C. D.5.在中,是上一点,且,则()A. B.C. D.6.根据下面茎叶图提供了甲、乙两组数据,可以求出甲、乙的中位数分别为()A.24和29 B.26和29 C.26和32 D.31和297.已知菱形的边长为,则()A. B. C. D.8.采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为,,,,分组后某组抽到的号码为1.抽到的人中,编号落入区间的人数为()A.10 B. C.12 D.139.若存在正实数,使得,则()A.实数的最大值为 B.实数的最小值为C.实数的最大值为 D.实数的最小值为10.在△ABC中,三个顶点分别为A(2,4),B(﹣1,2),C(1,0),点P(x,y)在△ABC的内部及其边界上运动,则y﹣x的最小值是()A.﹣3 B.﹣1 C.1 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系中,为原点,,动点满足,则的最大值是.12.与30°角终边相同的角_____________.13.在单位圆中,面积为1的扇形所对的圆心角的弧度数为_.14.已知且,则________15.下图是2016年在巴西举行的奥运会上,七位评委为某体操运动员的单项比赛打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为__________.16.函数的单调递增区间为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.18.设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.19.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出回归方程;(3)已知该厂技改前吨甲产品的生产能耗为吨标准煤.试根据(2)求出的线性回归方程,预测生产吨甲产品的生产能耗比技改前降低多少吨标准煤?(注:,)20.如图所示,在平面直角坐标系中,角和的顶点与坐标原点重合,始边与轴的非负半轴重合,终边分别与单位圆交于点、两点,点的纵坐标为.(Ⅰ)求的值;(Ⅱ)若,求的值.21.已知为等差数列,且,.(1)求的通项公式;(2)若等比数列满足,,求数列的前项和公式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
求出,判断当斜率不存在时是否满足题意,满足两数之外;不满足两数之间.【题目详解】,当斜率不存在时满足题意,即【题目点拨】本题主要考查斜率公式的应用,属于基础题.2、A【解题分析】
根据几何概型直接进行计算即可.【题目详解】月牙形图案的面积约为:本题正确选项:【题目点拨】本题考查几何概型的应用,属于基础题.3、B【解题分析】
因式分解不等式,可直接求得其解集。【题目详解】∵4x2-4x-3≤0,∴【题目点拨】本题考查求不等式解集,属于基础题。4、A【解题分析】
由的体积计算得高,已知将三棱锥的外接球,转化为长2,宽2,高的长方体的外接球,求出半径,可得答案.【题目详解】∵,,故三棱锥的底面面积为,由平面,得,又三棱锥的体积为,得,所以三棱锥的外接球,相当于长2,宽2,高的长方体的外接球,故球半径,得,故外接球的体积.故选:A.【题目点拨】本题考查了三棱锥外接球的体积,三棱锥体积公式的应用,根据已知计算出球的半径是解答的关键,属于中档题.5、C【解题分析】
利用平面向量的三角形法则和共线定理,即可得到结果.【题目详解】因为是上一点,且,则.故选:C.【题目点拨】本题考查了平面向量的线性运算和共线定理的应用,属于基础题.6、B【解题分析】
根据茎叶图,将两组数据按大小顺序排列,因为是12个数,所以中位数即为中间两数的平均数.【题目详解】从茎叶图知都有12个数,所以中位数为中间两个数的平均数甲中间两个数为25,27,所以中位数是26乙中间两个数为28,30,所以中位数是29故选:B【题目点拨】本题主要考查了茎叶图和中位数,平均数,还考查了数据处理的能力,属于基础题.7、D【解题分析】
由菱形可直接得出所求两向量的模长及夹角,直接利用向量数量积公式即可.【题目详解】由菱形的性质可以得出:所以选择D【题目点拨】直接考查向量数量积公式,属于简单题8、C【解题分析】
由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为an=30n﹣19,由401≤30n﹣21≤755,求得正整数n的个数,即可得出结论.【题目详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列,又某组抽到的号码为1,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为an=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n为正整数可得14≤n≤25,∴做问卷C的人数为25﹣14+1=12,故选C.【题目点拨】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.9、C【解题分析】
将题目所给方程转化为关于的一元二次方程,根据此方程在上有解列不等式组,解不等式组求得的取值范围,进而求出正确选项.【题目详解】由得,当时,方程为不和题意,故这是关于的一元二次方程,依题意可知,该方程在上有解,注意到,所以由解得,故实数的最大值为,所以选C.【题目点拨】本小题主要考查一元二次方程根的分布问题,考查化归与转化的数学思想方法,属于中档题.10、B【解题分析】
根据线性规划的知识求解.【题目详解】根据线性规划知识,的最小值一定在的三顶点中的某一个处取得,分别代入的坐标可得的最小值是.故选B.【题目点拨】本题考查简单的线性规划问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
试题分析:设,表示以为圆心,r=1为半径的圆,而,所以,,,故得最大值为考点:1.圆的标准方程;2.向量模的运算12、【解题分析】
根据终边相同的角的定义可得答案.【题目详解】与30°角终边相同的角,故答案为:【题目点拨】本题考查了终边相同的角的定义,属于基础题.13、2【解题分析】试题分析:由题意可得:.考点:扇形的面积公式.14、【解题分析】
根据数列极限的方法求解即可.【题目详解】由题,故.又.故.故.故答案为:【题目点拨】本题主要考查了数列极限的问题,属于基础题型.15、【解题分析】由平均数公式可得,故所求数据的方差是,应填答案。16、【解题分析】
令,解得的范围即为所求的单调区间.【题目详解】令,,解得:,的单调递增区间为故答案为:【题目点拨】本题考查正弦型函数单调区间的求解问题,关键是能够采用整体对应的方式,结合正弦函数的单调区间来进行求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)取出球为红球或黑球的概率为(2)取出球为红球或黑球或白球的概率为【解题分析】试题分析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的球是红球或黑球,根据古典概型和互斥事件的概率公式得到结果;(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的一球是红球或黑球或白球,根据古典概型公式得到结果试题解析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的球是红球或黑球共有9种结果,∴概率为.(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的一球是红球或黑球或白球共有11种结果,∴概率为.即取出的1球是红球或黑球的概率为;取出的1球是红球或黑球或白球的概率为.考点:等可能事件的概率18、(Ⅰ);(Ⅱ).【解题分析】
(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得的通项公式;(Ⅱ)首先求得的表达式,然后结合二次函数的性质可得其最小值.【题目详解】(Ⅰ)设等差数列的公差为,因为成等比数列,所以,即,解得,所以.(Ⅱ)由(Ⅰ)知,所以;当或者时,取到最小值.【题目点拨】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.19、(1)见解析.(2).(3)吨.【解题分析】
(1)直接描点即可(2)计算出的平均数,,及,,利用公式即可求得,问题得解.(3)将代入可得,结合已知即可得解.【题目详解】解:(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图;(2)计算,,,,∴回归方程的系数为:.,∴所求线性回归方程为;(3)利用线性回归方程计算时,,则,即比技改前降低了19.65吨.【题目点拨】本题主要考查了线性回归方程的求法,考查计算能力,还考查了线性回归方程的应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海市2025年中考地理真题及答案
- 2025年中国紧凑无线真空吸尘器行业市场全景分析及前景机遇研判报告
- 2025年中国金融保险行业人工智能行业市场全景分析及前景机遇研判报告
- 合肥java培训课件
- 2025年中国种用裸大麦行业市场评估分析及投资发展盈利预测报告
- 中国铝金迷你气缸行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 2025年 钳工技师职业资格考试试题附答案
- 音响发光式电压检测器行业深度研究分析报告(2024-2030版)
- 吉林省智能晾衣架项目可行性研究报告范文
- 2025年中国路径行业市场发展前景及发展趋势与投资战略研究报告
- 2025年华侨港澳台学生联招考试英语试卷试题(含答案详解)
- 2023年哈密市伊吾县社区工作者招聘考试真题
- 简历筛选技巧培训
- 2023年湖南省常德市中考地理试卷【附答案】
- (更新版)国家开放大学电大《计算机绘图(本)》网考形考作业试题及答案
- 扩频通信中直接扩频系统的同步技术
- 项目部内审检查表
- 春雨计划患教指南-高血压治疗与合理用药
- 学校校本课程开辟汇报材料
- GB/T 42103-2022游乐园安全风险识别与评估
- 棒球运动主题教育PPT模板
评论
0/150
提交评论