2024届安徽师范大学附中数学高一第二学期期末学业水平测试试题含解析_第1页
2024届安徽师范大学附中数学高一第二学期期末学业水平测试试题含解析_第2页
2024届安徽师范大学附中数学高一第二学期期末学业水平测试试题含解析_第3页
2024届安徽师范大学附中数学高一第二学期期末学业水平测试试题含解析_第4页
2024届安徽师范大学附中数学高一第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽师范大学附中数学高一第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体的三视图如图所示,则它的体积是()A.B.C.D.2.已知平面向量,,若与同向,则实数的值是()A. B. C. D.3.若双曲线的中心为原点,是双曲线的焦点,过的直线与双曲线相交于,两点,且的中点为,则双曲线的方程为()A. B. C. D.4.已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1) B. C. D.5.在中,角A,B,C所对的边分别为a,b,c,且满足,若,则周长的最大值为()A.9 B.10 C.11 D.126.向正方形ABCD内任投一点P,则“的面积大于正方形ABCD面积的”的概率是()A. B. C. D.7.在中,内角所对的边分别是.已知,,,则A. B. C. D.8.设向量,,则是的A.充分不必要条件 B.充分必要条件C.必要不充分条件 D.既不充分也不必要条件9.如果a<b<0,那么下列不等式成立的是()A. B. C. D.10.下列函数中,最小正周期为的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.夏季某座高山上的温度从山脚起每升高100米降低0.8度,若山脚的温度是36度,山顶的温度是20度,则这座山的高度是________米12.等比数列满足其公比_________________13.已知函数,,的图象如下图所示,则,,的大小关系为__________.(用“”号连接)14.数列{}的前项和为,若,则{}的前2019项和____.15.已知点在直线上,则的最小值为__________.16.已知向量a=1,2,b=2,-2,c=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知动点到定点的距离与到定点的距离之比为.(1)求动点的轨迹的方程;(2)过点作轨迹的切线,求该切线的方程.18.已知函数.(1)当时,,求的值;(2)令,若对任意都有恒成立,求的最大值.19.扇形AOB中心角为,所在圆半径为,它按如图(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.(1)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设;(2)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设;试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?20.在平面直角坐标系xOy中,已知点,圆.(1)求过点P且与圆C相切于原点的圆的标准方程;(2)过点P的直线l与圆C依次相交于A,B两点.①若,求l的方程;②当面积最大时,求直线l的方程.21.在中,,且边上的中线长为,(1)求角的大小;(2)求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算.由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.2、D【解题分析】

通过同向向量的性质即可得到答案.【题目详解】与同向,,解得或(舍去),故选D.【题目点拨】本题主要考查平行向量的坐标运算,但注意同向,难度较小.3、B【解题分析】由题可知,直线:,设,,得,又,解得,所以双曲线方程为,故选B。4、B【解题分析】

先求得直线y=ax+b(a>0)与x轴的交点为M(,0),由0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b;②若点M在点O和点A之间,求得b;③若点M在点A的左侧,求得b>1.再把以上得到的三个b的范围取并集,可得结果.【题目详解】由题意可得,三角形ABC的面积为1,由于直线y=ax+b(a>0)与x轴的交点为M(,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,如图:则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b.②若点M在点O和点A之间,如图:此时b,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即,即,可得a0,求得b,故有b.③若点M在点A的左侧,则b,由点M的横坐标1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|xN﹣xP|,即(1﹣b)•||,化简可得2(1﹣b)2=|a2﹣1|.由于此时b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2.两边开方可得(1﹣b)1,∴1﹣b,化简可得b>1,故有1b.综上可得b的取值范围应是,故选B.【题目点拨】本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考查了运算能力以及综合分析能力,分类讨论思想,属于难题.5、D【解题分析】

利用正弦定理和三角函数关系式,求得的值,由角的范围求出角的的大小,再由条件和余弦定理列出方程,结合基本不等式,即可求解.【题目详解】由,根据正弦定理可得,因为,所以,所以,即,又由,所以,由余弦定理可得,又因为,当且仅当时等号成立,又由,所以,即,所以三角形的周长的最大值为.故选:D.【题目点拨】本题主要考查了正弦定理、余弦定理和正弦函数的性质,以及基本不等式的应用综合应用,着重考查了推理与运算能力,属于中档试题.6、C【解题分析】

由题意,求出满足题意的点所在区域的面积,利用面积比求概率.【题目详解】由题意,设正方形的边长为1,则正方形的面积为1,要使的面积大于正方形面积的,需要到的距离大于,即点所在区域面积为,由几何概型得,的面积大于正方形面积的的概率为.故选:C.【题目点拨】本题考查几何概型的概率求法,解题的关键是明确概率模型,属于基础题.7、B【解题分析】

由已知三边,利用余弦定理可得,结合,为锐角,可得,利用三角形内角和定理即可求的值.【题目详解】在中,,,,由余弦定理可得:,,故为锐角,可得,,故选.【题目点拨】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.8、C【解题分析】

利用向量共线的性质求得,由充分条件与必要条件的定义可得结论.【题目详解】因为向量,,所以,即可以得到,不能推出,是“”的必要不充分条件,故选C.【题目点拨】本题主要考查向量共线的性质、充分条件与必要条件的定义,属于中档题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.9、D【解题分析】对于选项A,因为,所以,所以即,所以选项A错误;对于选项B,,所以,选项B错误;对于选项C,,当时,,当,,故选项C错误;对于选项D,,所以,又,所以,所以,选D.10、D【解题分析】

由函数的最小正周期为,逐个选项运算即可得解.【题目详解】解:对于选项A,的最小正周期为,对于选项B,的最小正周期为,对于选项C,的最小正周期为,对于选项D,的最小正周期为,故选D.【题目点拨】本题考查了三角函数的最小正周期,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2000【解题分析】

由题意得,温度下降了,再求出这个温度是由几段100米得出来的,最后乘以100即可.【题目详解】由题意得,这座山的高度为:米故答案为:2000【题目点拨】本题结合实际问题考查有理数的混合运算,解题关键是温度差里有几个0.8,属于基础题.12、【解题分析】

观察式子,将两式相除即可得到答案.【题目详解】根据题意,可知,于是.【题目点拨】本题主要考查等比数列公比的相关计算,难度很小.13、【解题分析】函数y=ax,y=xb,y=logcx的图象如图所示,由指数函数y=ax,x=2时,y∈(1,2);对数函数y=logcx,x=2,y∈(0,1);幂函数y=xb,x=2,y∈(1,2);可得a∈(1,2),b∈(0,1),c∈(2,+∞).可得b<a<c故答案为:b<a<c.14、1009【解题分析】

根据周期性,对2019项进行分类计算,可得结果。【题目详解】解:根据题意,的值以为循环周期,=1009故答案为:1009.【题目点拨】本题考查了周期性在数列中的应用,属于中档题。15、5【解题分析】

由题得表示点到点的距离,再利用点到直线的距离求解.【题目详解】由题得表示点到点的距离.又∵点在直线上,∴的最小值等于点到直线的距离,且.【题目点拨】本题主要考查点到两点间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.16、1【解题分析】

由两向量共线的坐标关系计算即可.【题目详解】由题可得2∵c//∴4λ-2=0故答案为1【题目点拨】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)或【解题分析】

(1)首先根据题意列出等式,再化简即可得到轨迹方程.(2)首先根据题意设出切线方程,再利用圆心到切线的距离等于半径即可求出切线方程.【题目详解】(1)设,有题知,,所以点的轨迹的方程:.(2)当切线斜率不存在时,切线为圆心到的距离,舍去.当切线斜率存在时,设切线方程为.圆心到切线的距离,解得:或.即切线方程为:或.【题目点拨】本题第一问考查了圆的轨迹方程,第二问考查了直线与圆的位置关系中的切线问题,属于中档题.18、(1);(2)【解题分析】

(1)根据得,得或,结合取值范围求解;(2)结合换元法处理二次不等式恒成立求参数的取值范围.【题目详解】(1),即,即有,所以或,即或由于,,所以;(2),令,对任意都有恒成立,即对恒成立,只需,解得:,所以的最大值为.【题目点拨】此题考查根据三角函数值相等求自变量取值的关系,利用换元法转化为二次函数处理不等式问题,根据不等式恒成立求参数的取值范围,涉及根的分布的问题.19、方式一最大值【解题分析】

试题分析:(1)运用公式时要注意审查公式成立的条件,要注意和差、倍角的相对性,要注意升幂、降幂的灵活运用;(2)重视三角函数的三变:三变指变角、变名、变式;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等,适当选择公式进行变形;(3)把形如化为,可进一步研究函数的周期、单调性、最值和对称性.试题解析:解(1)在中,设,则又当即时,(Ⅱ)令与的交点为,的交点为,则,于是,又当即时,取得最大值.,(Ⅰ)(Ⅱ)两种方式下矩形面积的最大值为方式一:考点:把实际问题转化为三角函数求最值问题.20、(1);(2)①;②或.【解题分析】

(1)设所求圆的圆心为,而所求圆的圆心与、共线,故圆心在直线上,又圆同时经过点与点,求出圆的圆心和半径,即可得答案;(2)①由题意可得为圆的直径,求出的坐标,可得直线的方程;②当直线的斜率不存在时,直线方程为,求出,的坐标,得到的面积;当直线的斜率存在时,设直线方程为.利用基本不等式、点到直线的距离公式求得,则直线方程可求.【题目详解】(1)由,得,圆的圆心坐标,设所求圆的圆心为.而所求圆的圆心与、共线,故圆心在直线上,又圆同时经过点与点,圆心又在直线上,则有:,解得:,即圆心的坐标为,又,即半径,故所求圆的方程为;(2)①由,得为圆的直径,则过点,的方程为,联立,解得,直线的斜率,则直线的方程为,即;②当直线的斜率不存在时,直线方程为,此时,,,;当直线的斜率存在时,设直线方程为.再设直线被圆所截弦长为,则圆心到直线的距离,则.当且仅当,即时等号成立.此时弦长为10,圆心到直线的距离为5,由,解得.直线方程为.当面积最大时,所求直线的方程为:或.【题目点拨】本题考查圆的方程的求法、直线与圆的位置关系应用,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力.21、(Ⅰ);(Ⅱ).【解题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论