版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
烟台市重点中学2024届数学高三上期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知x,y满足不等式组,则点所在区域的面积是()A.1 B.2 C. D.2.已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为A. B.C. D.3.的展开式中的系数是-10,则实数()A.2 B.1 C.-1 D.-24.《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠,长五尺在粗的一端截下一尺,重斤;在细的一端截下一尺,重斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤5.已知双曲线C:1(a>0,b>0)的焦距为8,一条渐近线方程为,则C为()A. B.C. D.6.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有()A.72种 B.144种 C.288种 D.360种7.函数的大致图象是()A. B.C. D.8.如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为()A.4 B. C.2 D.9.如图所示的茎叶图为高三某班名学生的化学考试成绩,算法框图中输入的,,,,为茎叶图中的学生成绩,则输出的,分别是()A., B.,C., D.,10.已知数列满足:)若正整数使得成立,则()A.16 B.17 C.18 D.1911.已知向量,夹角为,,,则()A.2 B.4 C. D.12.已知,,那么是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.“石头、剪子、布”是大家熟悉的二人游戏,其规则是:在石头、剪子和布中,二人各随机选出一种,若相同则平局;若不同,则石头克剪子,剪子克布,布克石头.甲、乙两人玩一次该游戏,则甲不输的概率是______.14.数列的前项和为,则数列的前项和_____.15.平面区域的外接圆的方程是____________.16.已知向量,满足,,,则向量在的夹角为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角、、所对的边分别为、、,且.(1)求角的大小;(2)若,的面积为,求及的值.18.(12分)如图,在正四棱柱中,已知,.(1)求异面直线与直线所成的角的大小;(2)求点到平面的距离.19.(12分)已知椭圆:,不与坐标轴垂直的直线与椭圆交于,两点.(Ⅰ)若线段的中点坐标为,求直线的方程;(Ⅱ)若直线过点,点满足(,分别为直线,的斜率),求的值.20.(12分)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种.方案一:每满100元减20元;方案二:满100元可抽奖一次.具体规则是从装有2个红球、2个白球的箱子随机取出3个球(逐个有放回地抽取),所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款7折8折9折原价(1)该商场某顾客购物金额超过100元,若该顾客选择方案二,求该顾客获得7折或8折优惠的概率;(2)若某顾客购物金额为180元,选择哪种方案更划算?21.(12分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.(1)求的通项公式;(2)若数列满足,求的值.22.(10分)设函数(其中),且函数在处的切线与直线平行.(1)求的值;(2)若函数,求证:恒成立.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
画出不等式表示的平面区域,计算面积即可.【详解】不等式表示的平面区域如图:直线的斜率为,直线的斜率为,所以两直线垂直,故为直角三角形,易得,,,,所以阴影部分面积.故选:C.【点睛】本题考查不等式组表示的平面区域面积的求法,考查数形结合思想和运算能力,属于常考题.2、B【解析】
双曲线的渐近线方程为,由题可知.设点,则点到直线的距离为,解得,所以,解得,所以双曲线的实轴的长为,故选B.3、C【解析】
利用通项公式找到的系数,令其等于-10即可.【详解】二项式展开式的通项为,令,得,则,所以,解得.故选:C【点睛】本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.4、B【解析】
依题意,金箠由粗到细各尺重量构成一个等差数列,则,由此利用等差数列性质求出结果.【详解】设金箠由粗到细各尺重量依次所成得等差数列为,设首项,则,公差,.故选B【点睛】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.5、A【解析】
由题意求得c与的值,结合隐含条件列式求得a2,b2,则答案可求.【详解】由题意,2c=8,则c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴双曲线C的方程为.故选:A.【点睛】本题考查双曲线的简单性质,属于基础题.6、B【解析】
利用分步计数原理结合排列求解即可【详解】第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.选.【点睛】本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题7、A【解析】
用排除B,C;用排除;可得正确答案.【详解】解:当时,,,所以,故可排除B,C;当时,,故可排除D.故选:A.【点睛】本题考查了函数图象,属基础题.8、A【解析】
由,两边平方后展开整理,即可求得,则的长可求.【详解】解:,,,,,,.,,故选:.【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.9、B【解析】
试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故,.考点:程序框图、茎叶图.10、B【解析】
计算,故,解得答案.【详解】当时,,即,且.故,,故.故选:.【点睛】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.11、A【解析】
根据模长计算公式和数量积运算,即可容易求得结果.【详解】由于,故选:A.【点睛】本题考查向量的数量积运算,模长的求解,属综合基础题.12、B【解析】
由,可得,解出即可判断出结论.【详解】解:因为,且.,解得.是的必要不充分条件.故选:.【点睛】本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
用树状图法列举出所有情况,得出甲不输的结果数,再计算即得.【详解】由题得,甲、乙两人玩一次该游戏,共有9种情况,其中甲不输有6种可能,故概率为.故答案为:【点睛】本题考查随机事件的概率,是基础题.14、【解析】
解:两式作差,得,经过检验得出数列的通项公式,进而求得的通项公式,裂项相消求和即可.【详解】解:两式作差,得化简得,检验:当n=1时,,所以数列是以2为首项,2为公比的等比数列;,,令故填:.【点睛】本题考查求数列的通项公式,裂项相消求数列的前n项和,解题过程中需要注意n的范围以及对特殊项的讨论,侧重考查运算能力.15、【解析】
作出平面区域,可知平面区域为三角形,求出三角形的三个顶点坐标,设三角形的外接圆方程为,将三角形三个顶点坐标代入圆的一般方程,求出、、的值,即可得出所求圆的方程.【详解】作出不等式组所表示的平面区域如下图所示:由图可知,平面区域为,联立,解得,则点,同理可得点、,设的外接圆方程为,由题意可得,解得,,,因此,所求圆的方程为.故答案为:.【点睛】本题考查三角形外接圆方程的求解,同时也考查了一元二次不等式组所表示的平面区域的求作,考查数形结合思想以及运算求解能力,属于中等题.16、【解析】
把平方利用数量积的运算化简即得解.【详解】因为,,,所以,∴,∴,因为所以.故答案为:【点睛】本题主要考查平面向量的数量积的运算法则,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2);【解析】
(1)由代入中计算即可;(2)由余弦定理可得,所以,由,变形即可得到答案.【详解】(1)因为,可得:,∴,或(舍),∵,∴.(2)由余弦定理,得所以,故,又,所以,所以.【点睛】本题考查二倍角公式以及正余弦定理解三角形,考查学生的运算求解能力,是一道容易题.18、(1);(2).【解析】
(1)建立空间坐标系,通过求向量与向量的夹角,转化为异面直线与直线所成的角的大小;(2)先求出面的一个法向量,再用点到面的距离公式算出即可.【详解】以为原点,所在直线分别为轴建系,设所以,,所以异面直线与直线所成的角的余弦值为,异面直线与直线所成的角的大小为.(2)因为,,设是面的一个法向量,所以有即,令,,故,又,所以点到平面的距离为.【点睛】本题主要考查向量法求异面直线所成角的大小和点到面的距离,意在考查学生的数学建模以及数学运算能力.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根据点差法,即可求得直线的斜率,则方程即可求得;(Ⅱ)设出直线方程,联立椭圆方程,利用韦达定理,根据,即可求得参数的值.【详解】(1)设,,则两式相减,可得.(*)因为线段的中点坐标为,所以,.代入(*)式,得.所以直线的斜率.所以直线的方程为,即.(Ⅱ)设直线:(),联立整理得.所以,解得.所以,.所以,所以.所以.因为,所以.【点睛】本题考查中点弦问题的点差法求解,以及利用代数与几何关系求直线方程,涉及韦达定理的应用,属中档题.20、(1)(2)选择方案二更为划算【解析】
(1)计算顾客获得7折优惠的概率,获得8折优惠的概率,相加得到答案.(2)选择方案二,记付款金额为元,则可取的值为126,144,162,180.,计算概率得到数学期望,比较大小得到答案.【详解】(1)该顾客获得7折优惠的概率,该顾客获得8折优惠的概率,故该顾客获得7折或8折优惠的概率.(2)若选择方案一,则付款金额为.若选择方案二,记付款金额为元,则可取的值为126,144,162,180.,,则.因为,所以选择方案二更为划算.【点睛】本题考查了概率的计算,数学期望,意在考查学生的计算能力和应用能力.21、(1)(2)【解析】
(1)由公比表示出,由成等差数列可求得,从而数列的通项公式;(2)求(1)得,然后对和式两两并项后利用等差数列的前项和公式可求解.【详解】(1)∵是等比数列,且成等差数列∴,即∴,解得:或∵,∴∵∴(2)∵∴【点睛】本题考查等比数列的通项公式,考查并项求和法及等差数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论