高三数学备课对称性-周期性_第1页
高三数学备课对称性-周期性_第2页
高三数学备课对称性-周期性_第3页
高三数学备课对称性-周期性_第4页
高三数学备课对称性-周期性_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4页共8页第三周第一课时函数对称性、周期性、平移同一函数的周期性、对称性问题(即函数自身)周期性定义:对称性定义:用图形来理解。对称性:偶函数关于y(即x=0)轴对称,偶函数有关系式奇函数关于(0,0)对称,奇函数有关系式探讨:(1)函数关于对称也可以写成或简证:设点在上,通过可知,,即点上,而点与点关于x=a对称。得证。若写成:,函数关于直线对称(2)函数关于点对称或简证:设点在上,即,通过可知,,所以,所以点也在上,而点与关于对称。得证。若写成:,函数关于点对称(3)函数关于点对称:假设函数关于对称,即关于任一个值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于对称。但在曲线c(x,y)=0,则有可能会出现关于对称,比如圆它会关于y=0对称。周期性:(1)函数满足且,则可推出即可以得到的周期为2(b-a),即可以得到“如果函数在定义域内关于垂直于x轴两条直线对称,则函数一定是周期函数”(2)如果奇函数满足则可以推出其周期是2T,且可以推出对称轴为,根据可以找出其对称中心为(以上)如果偶函数满足则亦可以推出周期是2T,且可以推出对称中心为,根据可以推出对称轴为(以上)(3)如果奇函数满足(),则函数是以4T为周期的周期性函数。如果偶函数满足(),则函数是以2T为周期的周期性函数。定理3:若函数在R上满足,且(其中),则函数以为周期.定理4:若函数在R上满足,且(其中),则函数以为周期.定理5:若函数在R上满足,且(其中),则函数以为周期.两个函数的图象对称性与关于X轴对称。换种说法:与若满足,即它们关于对称。与关于Y轴对称。换种说法:与若满足,即它们关于对称。与关于直线对称。换种说法:与若满足,即它们关于对称。与关于直线对称。换种说法:与若满足,即它们关于对称。关于点(a,b)对称。(3)计算:①若=,则就是函数的零点;②若·<,则令=(此时零点);③若·<,则令=(此时零点);(4)判断是否达到精度;即若,则得到零点零点值(或);否则重复步骤2~4。注:函数零点的性质从“数”的角度看:即是使的实数;从“形”的角度看:即是函数的图象与轴交点的横坐标;若函数的图象在处与轴相切,则零点通常称为不变号零点;若函数的图象在处与轴相交,则零点通常称为变号零点。注:用二分法求函数的变号零点:二分法的条件·表明用二分法求函数的近似零点都是指变号零点。*恒成立与有解问题一、教学目标:①掌握解决不等式恒成立问题的基本方法

②能灵活地解答变式问题

能力目标:

教学重点:探求不等式恒成立问题的方法

难点:数学思想在解决问题中的运用二、教学过程一次函数型:给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于ⅰ)或ⅱ)亦可合并定成同理,若在[m,n]内恒有f(x)<0,则有nmnmoxynmoxy二次函数型若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解。变量分离型若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。根据函数的奇偶性、周期性等性质直接根据图象判断若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果。尤其对于选择题、填空题这种方法更显方便、快捷。不等式恒成立与有解的区别(1)不等式f(x)<k在xI时恒成立xI.或f(x)的上界小于或等于k;(2)不等式f(x)<k在xI时有解xI.或f(x)的下界小于k;(3)不等式f(x)>k在xI时恒成立xI.或f(x)的下界大于或等于k;(4)不等式f(x)>k在xI时有解xI.或f(x)的上界大于k;解决不等式恒成立和有解解问题的基本策略常常是构作辅助函数,利用函数的单调性、最值(或上、下界)、图象求解;基本方法包括:分类讨论,数形结合,参数分离,变换主元等等.*耐克函数与飘带函数的图像与性质第三课时:二次函数和幂函数一、二次函数主要问题:1.讨论二次函数的区间最值问题:①注意对称轴与区间的相对位置;②函数在此区间上的单调性;2.讨论二次函数的区间根的分布情况一般需从三方面考虑:①判别式;②区间端点的函数值的符号;③对称轴与区间的相对位置.二、幂函数及其性质一、幂函数的定义 一般地,形如(R)的函数称为幂孙函数,其中是自变量,是常数.如等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.二、幂函数的图像和性质3.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.第四课时反函数(一)主要知识:1.反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数;2.反函数的定义域、值域上分别是原函数的值域、定义域,若与互为反函数,函数的定义域为、值域为,则,;3.互为反函数的两个函数具有相同的单调性,它们的图象关于对称.(二)主要方法:1.求反函数的一般方法:(1)由解出,(2)将中的互换位置,得,(3)求的值域得的定义域.第五课时:指数式与对数式1.对数的概念(1)对数的定义如果ax=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数.(2)几种常见对数对数形式特点记法一般对数底数为a(a>0且a≠1)log常用对数底数为10lgN自然对数底数为eln_N2.对数的性质与运算法则(1)对数的性质①alogaN=N;②logaaN=N(a>0且a≠1).(2)对数的重要公式①换底公式:logbN=eq\f(logaN,logab)(a,b均大于零且不等于1);②logab=eq\f(1,logba),推广logab·logbc·logcd=logad.(3)对数的运算法则如果a>0且a≠1,M>0,N>0,那么①loga(MN)=logaM+logaN;②logaeq\f(M,N)=logaM-logaN;③logaMn=nlogaM(n∈R);④logamMn=eq\f(n,m)logaM.第六课时指数函数1.指数函数的图象与性质一个关系分数指数幂与根式的关系根式与分数指数幂的实质是相同的,分数指数幂与根式可以相互转化,通常利用分数指数幂进行根式的化简运算.两个防范(1)指数函数的单调性是由底数a的大小决定的,因此解题时通常对底数a按:0<a<1和a>1进行分类讨论.(2)换元时注意换元后“新元”的范围.三个关键点画指数函数y=ax(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),eq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(1,a))).零距离书和作业全利用第七课时:对数函数对数函数的图象与性质反函数指数函数y=ax与对数函数y=logax互为反函数,它们的图象关于直线y=x对称.一种思想对数源于指数,指数式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论