2024届肇庆市高中毕业班高一数学第二学期期末教学质量检测模拟试题含解析_第1页
2024届肇庆市高中毕业班高一数学第二学期期末教学质量检测模拟试题含解析_第2页
2024届肇庆市高中毕业班高一数学第二学期期末教学质量检测模拟试题含解析_第3页
2024届肇庆市高中毕业班高一数学第二学期期末教学质量检测模拟试题含解析_第4页
2024届肇庆市高中毕业班高一数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届肇庆市高中毕业班高一数学第二学期期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是()A.0.3 B.0.55 C.0.7 D.0.752.平面向量与的夹角为,,,则A. B.12 C.4 D.3.某同学用收集到的6组数据对(xi,yi)(i=1,2,3,4,5,6)制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线l的方程:x,相关指数为r.现给出以下3个结论:①r>0;②直线l恰好过点D;③1;其中正确的结论是A.①② B.①③C.②③ D.①②③4.过点P(0,2)作直线x+my﹣4=0的垂线,垂足为Q,则Q到直线x+2y﹣14=0的距离最小值为()A.0 B.2 C. D.25.从装有红球和绿球的口袋内任取2个球(其中红球和绿球都多于2个),那么互斥而不对立的两个事件是()A.至少有一个红球,至少有一个绿球B.恰有一个红球,恰有两个绿球C.至少有一个红球,都是红球D.至少有一个红球,都是绿球6.如图所示,已知正三棱柱的所有棱长均为1,则三棱锥的体积为()A. B. C. D.7.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A. B. C. D.8.已知数列为等比数列,且,则()A. B. C. D.9.若某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.310.已知正方体中,、分别为,的中点,则异面直线和所成角的余弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,海岸线上有相距海里的两座灯塔A,B,灯塔B位于灯塔A的正南方向.海上停泊着两艘轮船,甲船位于灯塔A的北偏西,与A相距海里的D处;乙船位于灯塔B的北偏西方向,与B相距海里的C处,此时乙船与灯塔A之间的距离为海里,两艘轮船之间的距离为海里.12.已知点,,若向量,则向量______.13.已知,均为锐角,,,则______.14.已知等差数列则.15.设为虚数单位,复数的模为______.16.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为升;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设二次函数f(x)=ax2+bx.(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围;(2)当b=1时,若对任意x∈[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.18.设是正项等比数列的前项和,已知,(1)求数列的通项公式;(2)令,求数列的前项和.19.如图,在四棱锥中,底面,底面为矩形,为的中点,且,,.(1)求证:平面;(2)若点为线段上一点,且,求四棱锥的体积.20.已知函数.(I)当时,求不等式的解集;(II)若关于的不等式有且仅有一个整数解,求正实数的取值范围.21.如图,在四棱锥中,平面平面,,且,.(Ⅰ)求证:;(Ⅱ)若为的中点,求证:平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

由题意可知摸出黑球的概率,再根据摸出黑球,摸出红球为互斥事件,根据互斥事件的和即可求解.【题目详解】因为从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因为从盒子中摸出1个球为黑球或红球为互斥事件,所以摸出黑球或红球的概率,故选D.【题目点拨】本题主要考查了两个互斥事件的和事件,其概率公式,属于中档题.2、D【解题分析】

根据,利用向量数量积的定义和运算律即可求得结果.【题目详解】由题意得:,本题正确选项:【题目点拨】本题考查向量模长的求解,关键是能够通过平方运算将问题转化为平面向量数量积的求解问题,属于常考题型.3、A【解题分析】由图可知这些点分布在一条斜率大于零的直线附近,所以为正相关,即相关系数因为所以回归直线的方程必过点,即直线恰好过点;因为直线斜率接近于AD斜率,而,所以③错误,综上正确结论是①②,选A.4、C【解题分析】

由直线过定点,得到的中点,由垂直直线,得到点在以点为圆心,以为半径的圆,求得圆的方程,由此求出到直线的距离最小值,得到答案.【题目详解】由题意,过点作直线的垂线,垂足为,直线过定点,由中点公式可得,的中点,由垂直直线,所以点点在以点为圆心,以为半径的圆,其圆的方程为,则圆心到直线的距离为所以点到直线的距离最小值;,故选:C.【题目点拨】本题主要考查了圆的标准方程,直线与圆的位置关系的应用,同时涉及到点到直线的距离公式的应用,着重考查了推理与计算能力,以及分析问题和解答问题的能力,试题综合性强,属于中档试题.5、B【解题分析】由于从口袋中任取2个球有三个事件,恰有一个红球,恰有两个绿球,一红球和一绿球.所以恰有一个红球,恰有两个绿球是互斥而不对立的两个事件.因而应选B.6、A【解题分析】

利用等体法即可求解.【题目详解】三棱锥的体积等于三棱锥的体积,因此,三棱锥的体积为,故选:A.【题目点拨】本题考查了等体法求三棱锥的体积、三棱锥的体积公式,考查了转化与化归思想的应用,属于基础题.7、B【解题分析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.8、A【解题分析】

根据等比数列性质知:,得到答案.【题目详解】已知数列为等比数列故答案选A【题目点拨】本题考查了等比数列的性质,属于简单题.9、B【解题分析】

先由三视图判断该几何体为底面是直角三角形的直三棱柱,由棱柱的体积公式即可求出结果.【题目详解】据三视图分析知,该几何体是底面为直角三角形的直三棱柱,且三棱柱的底面直角三角形的直角边长分别为1和,三棱柱的高为,所以该几何体的体积.【题目点拨】本题主要考查几何体的三视图,由三视图求几何体的体积,属于基础题型.10、A【解题分析】

连接,则,所以为所求的角.【题目详解】连结,,因为、分别为,的中点,所以,则为所求的角,设正方体棱长为1,则,,,三角形AD1B为直角三角形,,选择A【题目点拨】本题主要考查了异面直线所成的夹角;求异面直线的夹角,通常把其中一条直线平移到和另外一条直线相交即得异面直线所成的角.属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、5,【解题分析】

为等边三角形,所以算出,,再在中根据余弦定理易得CD的长.【题目详解】因为为等边三角形,所以.在中根据余弦定理解得.【题目点拨】此题考查余弦定理的实际应用,关键点通过已知条件转换为数学模型再通过余弦定理求解即可,属于较易题目.12、【解题分析】

通过向量的加减运算即可得到答案.【题目详解】,.【题目点拨】本题主要考查向量的基本运算,难度很小.13、【解题分析】

先求出,,再由,并结合两角和与差的正弦公式求解即可.【题目详解】由题意,可知,则,又,则,或者,因为为锐角,所以不成立,即成立,所以.故.故答案为:.【题目点拨】本题考查两角和与差的正弦公式的应用,考查同角三角函数基本关系的应用,考查学生的计算求解能力,属于中档题.14、1【解题分析】试题分析:根据公式,,将代入,计算得n=1.考点:等差数列的通项公式.15、5【解题分析】

利用复数代数形式的乘法运算化简,然后代入复数模的公式,即可求得答案.【题目详解】由题意,复数,则复数的模为.故答案为5【题目点拨】本题主要考查了复数的乘法运算,以及复数模的计算,其中熟记复数的运算法则,和复数模的公式是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解题分析】试题分析:由题意可知,解得,所以.考点:等差数列通项公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)5≤f(-2)≤10;(2)[-2,0).【解题分析】

(1)用和表示,再根据不等式的性质求得.(2)对进行参变分离,根据和求得.【题目详解】解(1)方法一⇒∵f(-2)=4a-2b=3f(-1)+f(1),且1≤f(-1)≤2,2≤f(1)≤4,∴5≤f(-2)≤10.方法二设f(-2)=mf(-1)+nf(1),即4a-2b=m(a-b)+n(a+b)=(m+n)a-(m-n)b,比较两边系数:⇒∴f(-2)=3f(-1)+f(1),下同方法一.(2)当x∈[0,1]时,-1≤f(x)≤1,即-1≤ax2+x≤1,即当x∈[0,1]时,ax2+x+1≥0且ax2+x-1≤0恒成立;当x=0时,显然,ax2+x+1≥0且ax2+x-1≤0均成立;当x∈(0,1]时,若ax2+x+1≥0恒成立,则a≥--=-(+)2+,而-(+)2+在x∈(0,1]上的最大值为-2,∴a≥-2;当x∈(0,1]时,ax2+x-1≤0恒成立,则a≤-=(-)2-,而(-)2-在x∈(0,1]上的最小值为0,∴a≤0,∴-2≤a≤0,而a≠0,因此所求a的取值范围为[-2,0).【题目点拨】本题考查不等式的性质和参变分离的恒成立问题,属于难度题.18、(1);(2)【解题分析】

(1)设正项等比数列的公比为,当时,可验证出,可知;根据可构造方程求得,进而根据等比数列通项公式可求得结果;(2)由(1)可得,采用错位相减法即可求得结果.【题目详解】(1)设正项等比数列的公比为当时,,解得:,不合题意由得:,又整理得:,即,解得:(2)由(1)得:…①则…②①②得:【题目点拨】本题考查等比数列通项公式的求解、错位相减法求解数列的前项和;关键是能够得到数列的通项公式后,根据等差乘以等比的形式确定采用错位相减法求得结果,对学生的计算和求解能力有一定要求.19、(1)见解析(2)6【解题分析】

(1)连接交于点,得出点为的中点,利用中位线的性质得出,再利用直线与平面平行的判定定理可得出平面;(2)过作交于,由平面,得出平面,可而出,结合,可证明出平面,可得出,并计算出,利用平行线的性质求出的长,再利用锥体的体积公式可计算出四棱锥的体积.【题目详解】(1)连接交于,连接.四边形为矩形,∴为中点.又为中点,∴.又平面,平面,∴平面;(2)过作交于.∵平面,∴平面.又平面,∴.∵,,,平面,∴平面.连接,则,又是矩形,易证,而,,得,由得,∴.又矩形的面积为8,∴.【题目点拨】本题考查直线与平面平行的证明,以及锥体体积的计算,直线与平面平行的证明,常用以下三种方法进行证明:(1)中位线平行;(2)平行四边形对边平行;(3)构造面面平行来证明线面平行.一般遇到中点找中点,根据已知条件类型选择合适的方法证明.20、(I);(II),或【解题分析】

(I)直接解不等式得解集;(II)对a分类讨论解不等式分析找到a满足的不等式,解不等式即得解.【题目详解】(I)当时,不等式为,不等式的解集为,所以不等式的解集为;(II)原不等式可化为,①当,即时,原不等式的解集为,不满足题意;②当,即时,,此时,所以;③当,即时,,所以只需,解得;综上所述,,或.【题目点拨】本题主要考查一元二次不等式的解法和解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.21、(Ⅰ)见解析;(Ⅱ)见解析【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论