2024届山东省济南育英中学数学高一第二学期期末学业水平测试试题含解析_第1页
2024届山东省济南育英中学数学高一第二学期期末学业水平测试试题含解析_第2页
2024届山东省济南育英中学数学高一第二学期期末学业水平测试试题含解析_第3页
2024届山东省济南育英中学数学高一第二学期期末学业水平测试试题含解析_第4页
2024届山东省济南育英中学数学高一第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省济南育英中学数学高一第二学期期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,在中,点D是边的中点,则向量()A. B.C. D.2.棱长为2的正方体的内切球的体积为()A. B. C. D.3.如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是()A. B. C. D.与a的值有关联4.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789ABCDEF10进制0123456789101112131415现在,将十进制整数2019化成16进制数为()A.7E3 B.7F3 C.8E3 D.8F35.在中,,,其面积为,则等于()A. B. C. D.6.在ΔABC中,角A,B,C所对的边分别为a,b,c,若A=π3,B=π4,A.23 B.2 C.3 D.7.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽丈,长丈;上棱长丈,无宽,高丈(如图).问它的体积是多少?”这个问题的答案是()A.立方丈 B.立方丈C.立方丈 D.立方丈8.如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是()A.这15天日平均温度的极差为B.连续三天日平均温度的方差最大的是7日,8日,9日三天C.由折线图能预测16日温度要低于D.由折线图能预测本月温度小于的天数少于温度大于的天数9.若、、为实数,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则10.已知基本单位向量,,则的值为()A.1 B.5 C.7 D.25二、填空题:本大题共6小题,每小题5分,共30分。11.设等差数列的前项和为,若,,则的最小值为______.12.棱长为,各面都为等边三角形的四面体内有一点,由点向各面作垂线,垂线段的长度分别为,则=______.13.设向量,且,则__________.14.已知则sin2x的值为________.15.经过两圆和的交点的直线方程为______.16.若复数(为虚数单位),则的共轭复数________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列的前项和,数列为等比数列,且.(1)求数列和的通项公式;(2)设,求数列的前项和.18.已知和的交点为.(1)求经过点且与直线垂直的直线的方程(2)直线经过点与轴、轴交于、两点,且为线段的中点,求的面积.19.在中,角A,B,C的对边分别为a,b,c,,且.(1)求A;(2)求面积的最大值.20.设数列的前项和为,满足,且,数列满足,对任意的,且成等比数列,其中.(1)求数列的通项公式(2)记,证明:当且时,21.已知函数.(1)求在区间上的单调递增区间;(2)求在的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

根据向量线性运算法则可求得结果.【题目详解】为中点本题正确选项:【题目点拨】本题考查根据向量线性运算,用基底表示向量的问题,属于常考题型.2、C【解题分析】

根据正方体的内切球的直径与正方体的棱长相等可得结果.【题目详解】因为棱长为2的正方体的内切球的直径与正方体的棱长相等,所以直径,内切球的体积为,故选:C.【题目点拨】本题主要考查正方体的内切球的体积,利用正方体的内切球的直径与正方体的棱长相等求出半径是解题的关键.3、C【解题分析】试题分析:本题考查几何概型问题,击中阴影部分的概率为.考点:几何概型,圆的面积公式.4、A【解题分析】

通过竖式除法,用2019除以16,取其余数,再用商除以16,取其余数,直至商为零,将余数逆着写出来即可.【题目详解】用2019除以16,得余数为3,商为126;用126除以16,得余数为14,商为7;用7除以16,得余数为7,商为0;将余数3,14,7逆着写,即可得7E3.故选:A.【题目点拨】本题考查进制的转化,只需按照流程执行即可.5、A【解题分析】

先由三角形面积公式求出,再由余弦定理得到,再由正弦定理,即可得出结果.【题目详解】因为在中,,,其面积为,所以,因此,所以,所以,由正弦定理可得:,所以.故选A【题目点拨】本题主要考查解三角形,熟记正弦定理和余弦定理即可,属于基础题型.6、A【解题分析】

利用正弦定理asinA=【题目详解】在ΔABC中,由正弦定理得asinA=故选:A.【题目点拨】本题考查利用正弦定理求边,要记得正弦定理所适用的基本类型,考查计算能力,属于基础题。7、A【解题分析】过点分别作平面和平面垂直于底面,所以几何体的体积分为三部分中间是直三棱柱,两边是两个一样的四棱锥,所以立方丈,故选A.8、B【解题分析】

利用折线图的性质,结合各选项进行判断,即可得解.【题目详解】由某地某月1日至15日的日平均温度变化的折线图,得:在中,这15天日平均温度的极差为:,故错误;在中,连续三天日平均温度的方差最大的是7日,8日,9日三天,故正确;在中,由折线图无法预测16日温度要是否低于,故错误;在中,由折线图无法预测本月温度小于的天数是否少于温度大于的天数,故错误.故选.【题目点拨】本题考查命题真假的判断,考查折线图的性质等基础知识,考查运算求解能力、数据处理能力,考查数形结合思想,是基础题.9、B【解题分析】

利用等式的性质或特殊值法来判断各选项中不等式的正误.【题目详解】对于A选项,若,则,故A不成立;对于B选项,,在不等式同时乘以,得,另一方面在不等式两边同时乘以,得,,故B成立;对于选项C,在两边同时除以,可得,所以C不成立;对于选项D,令,,则有,,,所以D不成立.故选B.【题目点拨】本题考查不等式正误的判断,常用的判断方法有:不等式的基本性质、特殊值法以及比较法,在实际操作中,可结合不等式结构合理选择相应的方法进行判断,考查推理能力,属于基础题.10、B【解题分析】

计算出向量的坐标,再利用向量的求模公式计算出的值.【题目详解】由题意可得,因此,,故选B.【题目点拨】本题考查向量模的计算,解题的关键就是求出向量的坐标,并利用坐标求出向量的模,考查运算求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

用基本量法求出数列的通项公式,由通项公式可得取最小值时的值,从而得的最小值.【题目详解】设数列公差为,则由已知得,解得,∴,,,又,、∴的最小值为.故答案为:..【题目点拨】本题考查等差数列的前项和的最值.首项为负且递增的等差数列,满足的最大的使得最小,首项为正且递减的等差数列,满足的最大的使得最大,当然也可把表示为的二次函数,由二次函数知识求得最值.12、.【解题分析】

根据等积法可得∴13、【解题分析】因为,所以,故答案为.14、【解题分析】

利用二倍角的余弦函数公式求出的值,再利用诱导公式化简,将的值代入计算即可求出值.【题目详解】解:∵,,则sin2x==,故答案为.【题目点拨】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.15、【解题分析】

利用圆系方程,求解即可.【题目详解】设两圆和的交点分别为,则线段是两个圆的公共弦.令,,两式相减,得,即,故线段所在直线的方程为.【题目点拨】本题考查圆系方程的应用,考查计算能力.16、【解题分析】

利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【题目详解】由z=i(2﹣i)=1+2i,得.故答案为1﹣2i.【题目点拨】本题考查复数代数形式的乘除运算,考查共轭复数的基本概念,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解题分析】

(1)通过求解数列的通项公式,从而可以求出首项与公比,即可得到的通项公式;(2)化简,利用错位相减法求解数列的和即可.【题目详解】(1)∴,∴,∵,∴,∴,,∵,,∴,从而,∵数列为等比数列∴数列的公比为,从而;(2)∵,,∴∴∴,∴.【题目点拨】本题考查已知求的通项公式以及数列求和,考查计算能力.在通过求的通项公式时,不要忽略时的情况.18、(1);(2)2【解题分析】

(1)联立两条直线的方程,解方程组求得点坐标,根据的斜率求得与其垂直直线的斜率,根据点斜式求得所求直线方程.(2)根据(1)中点的坐标以及为中点这一条件,求得两点的坐标,进而求得三角形的面积.【题目详解】解:(1)联立,解得交点的坐标为,∵与垂直,∴的斜率,∴的方程为,即.(2)∵为的中点,已知,,即,∴【题目点拨】本小题主要考查两条直线交点坐标的求法,考查两条直线垂直斜率的关系,考查直线的点斜式方程,考查三角形的面积公式以及中点坐标,属于基础题.19、(1);(2)【解题分析】

(1)由题目条件a=1,可以将(1+b)(sinA-sinB)=(c-b)sinC中的1换成a,达到齐次化的目的,再用正余弦定理解决;(2)已知∠A,要求△ABC的面积,可用公式,因此把问题转化为求bc的最大值.【题目详解】(1)因为(1+b)(sinA-sinB)=(c-b)sinC,由正弦定理得:(1+b)(a-b)=(c-b)c∴(a+b)(a-b)=(c-b)c,得b2+c2-a2=bc由余弦定理得:,所以.(2)因为b2+c2-a2=bc,所以bc=b2+c2-1≥2bc-1,可得bc≤1;所以,当且仅当b=c=1时,取等号.∴面积的最大值.【题目点拨】本题考查正弦定理解三角形及面积问题,解决三角形面积最值问题常常结合均值不等式求解,属于中等题.20、(1).;.(2)证明见解析.【解题分析】

(1)当时,由,两式相减得,用等差中项确定是等差数列再求通项公式.令,根据成等比数列,求得,从而得到(2)由(1)知根据证明的结构使用放缩法,得到,再相消法求和.【题目详解】(1)当时,由,得,两式相减得,当时,,所以是等差数列.又因为,所以,所以,所以..令,因为成等比数列,所以,所以,所以,又因为.,所以.(2)由(1)知,因为,所以,.同理所以所以.所以当且时,【题目点拨】本题主要考查了数列递推关系和等比数列的性质,放缩法证明数列不等式问题,属于难题.21、(1)和.(2)【解题分析】

(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论