版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省白城市大安市第二中学数学高一下期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与直线平行,则的值为()A.1 B.﹣1 C.±1 D.02.已知平面向量,,且,则=A. B. C. D.3.已知,则的最小值为A.3 B.4 C.5 D.64.在中,,,分别是角,,的对边,且满足,那么的形状一定是()A.等腰三角形 B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形5.已知扇形的面积为2cm2,扇形圆心角θ的弧度数是4,则扇形的周长为()A.2cm B.4cm C.6cm D.8cm6.已知,则=()A. B. C. D.7.(2018年天津卷文)设变量x,y满足约束条件则目标函数的最大值为A.6 B.19 C.21 D.458.将函数(其中)的图象向右平移个单位,若所得图象与原图象重合,则不可能等于()A.0 B. C. D.9.给出下面四个命题:①;②;③;④.其中正确的个数为()A.1个 B.2个 C.3个 D.4个10.已知扇形的面积为,半径为,则扇形的圆心角的弧度数为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足,且对于任意的,都有,则___;数列前10项的和____.12.已知函数,则______.13.正项等比数列中,,,则公比__________.14.正方体中,分别是的中点,则所成的角的余弦值是__________.15.若正四棱锥的所有棱长都相等,则该棱锥的侧棱与底面所成的角的大小为____.16.已知函数,下列结论中:函数关于对称;函数关于对称;函数在是增函数,将的图象向右平移可得到的图象.其中正确的结论序号为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列满足,且.(1)求数列的通项;(2)求数列的前项和的最大值.18.已知三棱锥中,是边长为的正三角形,;(1)证明:平面平面;(2)设为棱的中点,求二面角的余弦值.19.已知函数.(1)若,求函数有零点的概率;(2)若,求成立的概率.20.已知函数,若,且,,求满足条件的,.21.如图,为了测量河对岸、两点的距离,观察者找到一个点,从点可以观察到点、;找到一个点,从点可以观察到点、;找到一个点,从点可以观察到点、.并测量得到以下数据,,,,,米,米.求、两点的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
两直线平行表示斜率相同或者都垂直x轴,即。【题目详解】当时,两直线分别为:与直线,不平行,当时,直线化为:直线化为:,两直线平行,所以,,解得:,当时,两直线重合,不符,所以,【题目点拨】直线平行即表示斜率相同,且截距不同,如果截距相同则表示同一条直线。2、B【解题分析】
根据向量平行求出x的值,结合向量模长的坐标公式进行求解即可.【题目详解】且,则故故选B.【题目点拨】本题考查向量模长的计算,根据向量平行的坐标公式求出x的值是解决本题的关键.3、C【解题分析】
由,得,则,利用基本不等式,即可求解.【题目详解】由题意,因为,则,所以,当且仅当时,即时取等号,所以的最小值为5,故选C.【题目点拨】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解题分析】
由正弦定理,可得,.,或,或,即或,即三角形为等腰三角形或直角三角形,故选C.考点:1正弦定理;2正弦的二倍角公式.5、C【解题分析】设扇形的半径为R,则R2θ=2,∴R2=1R=1,∴扇形的周长为2R+θ·R=2+4=6(cm).6、C【解题分析】由得:,所以,故选D.7、C【解题分析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.8、D【解题分析】由题意,所以,因此,从而,可知不可能等于.9、B【解题分析】①;②;③;④,所以正确的为①②,选B.10、A【解题分析】
设半径为,圆心角为,根据扇形面积公式,结合题中数据,即可求出结果.【题目详解】设半径为,圆心角为,则对应扇形面积,又,,则故选A.【题目点拨】本题主要考查由扇形面积求圆心角的问题,熟记扇形面积公式即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、,【解题分析】试题分析:由得由得,所以数列为等比数列,因此考点:等比数列通项与和项12、【解题分析】
根据题意令f(x)=,求出x的值,即可得出f﹣1()的值.【题目详解】令f(x)=+arcsin(2x)=,得arcsin(2x)=﹣,∴2x=﹣,解得x=﹣,∴f﹣1()=﹣.故答案为:﹣.【题目点拨】本题考查了反函数以及反正弦函数的应用问题,属于基础题.13、【解题分析】
根据题意,由等比数列的性质可得,进而分析可得答案.【题目详解】根据题意,等比数列中,,则,又由数列是正项的等比数列,所以.【题目点拨】本题主要考查了等比数列的通项公式的应用,其中解答中熟记等比数列的通项公式,以及注意数列是正项等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解题分析】
取的中点,由得出异面直线与所成的角为,然后在由余弦定理计算出,可得出结果.【题目详解】取的中点,由且可得为所成的角,设正方体棱长为,中利用勾股定理可得,又,由余弦定理可得,故答案为.【题目点拨】本题考查异面直线所成角的计算,一般利用平移直线找出异面直线所成的角,再选择合适的三角形,利用余弦定理或锐角三角函数来计算,考查空间想象能力与计算能力,属于中等题.15、【解题分析】
先作出线面角,再利用三角函数求解即可.【题目详解】如图,设正四棱锥的棱长为1,作在底面的射影,则为与底面所成角,为正方形的中心,,,,故答案为.【题目点拨】本题考查线面角,考查学生的计算能力,作出线面角是关键.属于基础题.16、【解题分析】
把化成的型式即可。【题目详解】由题意得所以对称轴为,对,当时,对称中心为,对。的增区间为,对向右平移得。错【题目点拨】本题考查三角函数的性质,三角函数变换,意在考查学生对三角函数的图像与性质的掌握情况。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)144【解题分析】
(1)把带入通项式即可求出公差,从而求出通项。(2)根据(1)的结果以及等差数列前项和公式即可。【题目详解】(1)设公差为,则则则(2)由等差数列求和公式得则所以当时,有最大值144【题目点拨】本题主要考查了等差数列的通项以及等差数列的前和公式,属于基础题18、(1)见解析(2)【解题分析】
(1)由题意结合正弦定理可得,据此可证得平面,从而可得题中的结论;(2)在平面中,过点作,以所在的直线分别为轴建立空间直角坐标系,由空间向量的结论求得半平面的法向量,然后求解二面角的余弦值即可.【题目详解】(1)证明:在中,,,,由余弦定理可得,,,,平面,平面,平面平面.(2)在平面中,过点作,以所在的直线分别为轴建立空间直角坐标系,则设平面的一个法向量为则解得,,即设平面的一个法向量为则解得,,即由图可知二面角为锐角,所以二面角的余弦值为.【题目点拨】本题主要考查面面垂直的证明方法,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.19、(1);(2)【解题分析】
(1)求得有零点的条件,运用古典概率的公式,计算可得所求;(2)若,即,画出不等式组表示的区域,计算面积可得所求.【题目详解】解:(1)函数有零点的条件为,即,,可得事件的总数为,而有零点的个数为,,,,,,共7个,则函数有零点的概率为;(2)若,即,画出的区域,可得成立的概率为.【题目点拨】本题考查古典概率和几何概率的求法,考查运算能力,属于基础题.20、,【解题分析】
利用三角恒等变换,化简的解析式,从而得出结论.【题目详解】解:,∴,待定系数,可得,又,∴,∴,.【题目点拨】本题主要考查三角恒等变换,属
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学语文六年级上册教案
- 企业财务审计管理中的风险控制
- 海洋资源验收管理办法
- 企业团队建设行政人事部策略
- 民生改善提案管理办法
- 互联网金融服务招投标合同模板
- 汽车物流仓储协议
- 建筑空调工程延期合同协议书
- 专利权交易合同
- 河道综合治理工程合同
- 高考语文专题复习:小说阅读特殊“异常视角”知识-儿童视角、女性视角、动物视角
- 2023年涪陵区沙坪坝区事业单位招聘笔试《职业能力测试》题库及答案解析
- 2023年河北普通高中学业水平考试历史试题
- JJF 1139-2005计量器具检定周期确定原则和方法
- GB/T 7095.4-2008漆包铜扁绕组线第4部分:180级聚酯亚胺漆包铜扁线
- 《中药竹罐治疗颈椎病的应用进展综述【3000字论文】》
- GA/T 1567-2019城市道路交通隔离栏设置指南
- 谭嗣同介绍ppt演示说课讲解
- 第六章革命军队建设和军事战略的理论
- 年度取用水计划申请表
- 初中数学华东师大七年级上册第1章走进数学世界七年级数学上册数学活动月历中
评论
0/150
提交评论