2024届四川省仁寿县二中、华兴中学高一数学第二学期期末经典试题含解析_第1页
2024届四川省仁寿县二中、华兴中学高一数学第二学期期末经典试题含解析_第2页
2024届四川省仁寿县二中、华兴中学高一数学第二学期期末经典试题含解析_第3页
2024届四川省仁寿县二中、华兴中学高一数学第二学期期末经典试题含解析_第4页
2024届四川省仁寿县二中、华兴中学高一数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省仁寿县二中、华兴中学高一数学第二学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知在角终边上,若,则()A. B.-2 C.2 D.2.若一个人下半身长(肚脐至足底)与全身长的比近似为5-12(5-12≈0.618A.身材完美,无需改善 B.可以戴一顶合适高度的帽子C.可以穿一双合适高度的增高鞋 D.同时穿戴同样高度的增高鞋与帽子3.己知某三棱锥的三视图如图所示,其中正视图和侧视图都是边长为2的等边三角形,则该三棱锥的体积为()A. B. C. D.4.函数()的部分图象如图所示,若,且,则()A.1 B. C. D.5.已知向量满足:,,,则()A. B. C. D.6.已知函数在区间上是增函数,且在区间上恰好取得一次最大值为2,则的取值范围是()A. B. C. D.7.已知是定义在上不恒为的函数,且对任意,有成立,,令,则有()A.为等差数列 B.为等比数列C.为等差数列 D.为等比数列8.经过两条直线和的交点,且垂直于直线的直线方程为()A. B. C. D.9.已知向量若为实数,则=()A.2 B.1 C. D.10.下列四个函数中,以为最小正周期,且在区间上为减函数的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角的对边分别为,若面积,则角__________.12.在平行六面体中,为与的交点,若存在实数,使向量,则__________.13.已知,向量的夹角为,则的最大值为_____.14.某中学从甲乙丙3人中选1人参加全市中学男子1500米比赛,现将他们最近集训中的10次成绩(单位:秒)的平均数与方差制成如下的表格:甲乙丙平均数250240240方差151520根据表中数据,该中学应选__________参加比赛.15.______.16.在中,,则_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在直三棱柱中,,二面角为直角,为的中点.(1)求证:平面平面;(2)求直线与平面所成的角.18.设函数.(1)当时,解关于的不等式;(2)若关于的不等式的解集为,求的值.19.年北京市进行人口抽样调查,随机抽取了某区居民人,记录他们的年龄,将数据分成组:,,,…,并整理得到如下频率分布直方图:(Ⅰ)从该区中随机抽取一人,估计其年龄不小于的概率;(Ⅱ)估计该区居民年龄的中位数(精确到);(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.20.在平面直角坐标系中,已知射线与射线,过点作直线l分别交两射线于点A、B(不同于原点O).(1)当取得最小值时,直线l的方程;(2)求的最小值;21.已知函数.(1)求证:;(2)若角满足,求锐角的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

由正弦函数的定义求解.【题目详解】,显然,∴.故选C.【题目点拨】本题考查正弦函数的定义,属于基础题.解题时注意的符号.2、C【解题分析】

对每一个选项逐一分析研究得解.【题目详解】A.103103+72B.假设她需要戴上高度为x厘米的帽子,则103175C.假设她可以穿一双合适高度为y的增高鞋,则103+D.假设同时穿戴同样高度z的增高鞋与帽子,则103+故选:C【题目点拨】本题主要考查学生对新定义的理解和应用,属于基础题.3、B【解题分析】

先找到三视图对应的几何体原图,再求几何体的体积.【题目详解】由题得三视图对应的几何体原图是如图所示的三棱锥A-BCD,所以几何体的体积为.故选B【题目点拨】本题主要考查三视图找到几何体原图,考查三棱锥体积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.4、D【解题分析】

由三角函数的图象求得,再根据三角函数的图象与性质,即可求解.【题目详解】由图象可知,,即,所以,即,又因为,则,解得,又由,所以,所以,又因为,所以图中的最高点坐标为.结合图象和已知条件可知,所以,故选D.【题目点拨】本题主要考查了由三角函数的部分图象求解函数的解析式,以及三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.5、D【解题分析】

首先根据题中条件求出与的数量积,然后求解即可.【题目详解】由题有,即,,所以.故选:D.【题目点拨】本题主要考查了向量的模,属于基础题.6、D【解题分析】

化简函数为正弦型函数,根据题意,利用正弦函数的图象与性质求得的取值范围.【题目详解】解:函数则函数在上是含原点的递增区间;又因为函数在区间上是单调递增,则,得不等式组又因为,所以解得.又因为函数在区间上恰好取得一次最大值为2,可得,所以,综上所述,可得.故选:D.【题目点拨】本题主要考查了正弦函数的图像和性质应用问题,也考查了三角函数的灵活应用,属于中档题.7、C【解题分析】令,得到得到,.,说明为等差数列,故C正确,根据选项,排除A,D.∵.显然既不是等差也不是等比数列.故选C.8、D【解题分析】

首先求出两条直线的交点坐标,再根据垂直求出斜率,点斜式写方程即可.【题目详解】有题知:,解得:,交点.直线的斜率为,所求直线斜率为.所求直线为:,即.故选:D【题目点拨】本题主要考查如何求两条直线的交点坐标,同时考查了两条直线的位置关系,属于简单题.9、D【解题分析】

求出向量的坐标,然后根据向量的平行得到所求值.【题目详解】∵,∴.又,∴,解得.故选D.【题目点拨】本题考查向量的运算和向量共线的坐标表示,属于基础题.10、B【解题分析】

分别求出四个选项中函数的周期,排除选项后,再通过函数的单调减区间找出正确选项即可.【题目详解】由题意观察选项,C的周期不是,所以C不正确;对于A,,函数的周期为,但在区间上为增函数,故A不正确;对于B,,函数的周期为,且在区间上为减函数,故B正确;对于D,,函数的周期为,但在区间上为增函数,故D不正确;故选:B【题目点拨】本题主要考查三角函数的性质,需熟记正弦、余弦、正切、余切的性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据面积公式计算出的值,然后利用反三角函数求解出的值.【题目详解】因为,所以,则,则有:.【题目点拨】本题考查三角形的面积公式以及余弦定理的应用,难度较易.利用面积公式的时候要选择合适的公式进行化简,可根据所求角进行选择.12、【解题分析】

在平行六面体中把向量用用表示,再利用待定系数法,求得.再求解。【题目详解】如图所示:因为,又因为,所以,所以.故答案为:【题目点拨】本题主要考查了空间向量的基本定理,还考查了运算求解的能力,属于基础题.13、【解题分析】

将两边平方,化简后利用基本不等式求得的最大值.【题目详解】将两边平方并化简得,由基本不等式得,故,即,即,所以的最大值为.【题目点拨】本小题主要考查平面向量模的运算,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.14、乙;【解题分析】

一个看均值,要均值小,成绩好;一个看方差,要方差小,成绩稳定.【题目详解】乙的均值比甲小,与丙相同,乙的方差与甲相同,但比丙小,即乙成绩好,又稳定,应选乙、故答案为乙.【题目点拨】本题考查用样本的数据特征来解决实际问题.一般可看均值(找均值好的)和方差(方差小的稳定),这样比较易得结论.15、【解题分析】

,,故答案为.考点:三角函数诱导公式、切割化弦思想.16、【解题分析】

先由正弦定理得到,再由余弦定理求得的值.【题目详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【题目点拨】本题考查了正弦定理和余弦定理的运用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见详解;(2).【解题分析】

(1)先证明平面,再推出面面垂直;(2)由(1)可知即为所求,在三角形中求角即可.【题目详解】(1)证明:因为,所以;又为的中点,所以.在直三棱柱中,平面.又因为平面中,所以,因为,所以平面,又因为平面,所以平面平面.(2)由(1)知为在平面内的射影,所以为直线与平面所成的角,设,则,在中,,在中,,又,得,因此直线与平面所成的角为.【题目点拨】本题第一问考查由线面垂直证明面面垂直,第二问考查线面角的求解,属综合基础题.18、(1)(2)【解题分析】

(1)不等式为,根据一元二次不等式的解法直接求得结果;(2)根据一元二次不等式与一元二次方程的关系可知的两根为:和,且,利用韦达定理构造方程可求得结果.【题目详解】(1)当时,由得:,解得:或不等式的解集为:(2)由不等式得:解集为方程的两根为:和,且,即,解得:【题目点拨】本题考查一元二次不等式的求解、一元二次不等式解集和一元二次方程根的关系;关键是能够根据不等式解集得到方程的根,利用韦达定理求得结果.19、(Ⅰ)(Ⅱ)(Ⅲ)【解题分析】

(I)计算之间的频率和,由此估计出年龄不小于的概率.(II)从左往右,计算出频率之和为的位置,由此估计中中位数.(III)用各组中点值乘以频率人后相加,求得居民平均年龄的估计值.【题目详解】解:(Ⅰ)设从该区中随机抽取一人,估计其年龄不小于60为事件,所以该区中随机抽取一人,估计其年龄不小于60的概率为.(Ⅱ)年龄在的累计频率为,,所以估计中位数为.(Ⅲ)平均年龄为【题目点拨】本小题主要考查频率分布直方图的识别与应用,考查频率分布直方图估计中位数和平均数,考查运算求解能力,属于中档题.20、(1);(2)6.【解题分析】

(1)设,,利用三点共线可得的关系,计算出后由基本不等式求得最小值.从而得直线方程;(2)由(1)中所设坐标计算出,利用基本不等式由(1)中所得关系可得的最小值,从而得的最小值.【题目详解】(1)设,,因为A,B,M三点共线,所以与共线,因为,,所以,得,即,,等号当且仅当时取得,此时直线l的方程为.(2)因为由,所以,当且仅当时取得等号,所以当时,取最小值6.【题目点拨】本题考查直线方程的应用,考查三点共线的向量表示,考查用基本不等式求最值.用基本不等式求最值时要根据目标函数的特征采取不同的方法,如(1)中用“1”的代换配凑出基本不等式的条件求得最值,(2)直接由已知应用基

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论