版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省益阳市高一数学第二学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么互斥而不对立的两个事件是()A.至少有1名男生和至少有1名女生B.至多有1名男生和都是女生C.至少有1名男生和都是女生D.恰有1名男生和恰有2名男生2.若,,则()A. B. C. D.3.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是()A.MN//AB B.平面VAC⊥平面VBCC.MN与BC所成的角为45° D.OC⊥平面VAC4.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或 C.或 D.或5.已知数据,2的平均值为2,方差为1,则数据相对于原数据()A.一样稳定 B.变得比较稳定C.变得比较不稳定 D.稳定性不可以判断6.点M(4,m)关于点N(n,-3)的对称点为P(6,-9)则()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=57.若||=2cos15°,||=4sin15°,的夹角为30°,则等于()A. B. C.2 D.8.若将函数的图象向左平移个单位长度,平移后的图象关于点对称,则函数在上的最小值是A. B. C. D.9.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度10.直线的倾斜角是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.cos212.函数的值域为______.13.体积为8的一个正方体,其全面积与球的表面积相等,则球的体积等于________.14.已知当时,函数(且)取得最小值,则时,的值为__________.15.若当时,不等式恒成立,则实数a的取值范围是_____.16.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量=.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.(1)求证:AE⊥B1C;(2)求异面直线AE与A1C所成的角的大小;(3)若G为C1C中点,求二面角C-AG-E的正切值.18.如图,在以、、、、、为顶点的五面体中,面是等腰梯形,,面是矩形,平面平面,,.(1)求证:平面平面;(2)若三棱锥的体积为,求的值.19.如图,在中,,角的平分线交于点,设,其中.(1)求;(2)若,求的长.20.已知直线l经过点,并且其倾斜角等于直线的倾斜角的2倍.求直线l的方程.21.设数列的前项和为,对于,,其中是常数.(1)试讨论:数列在什么条件下为等比数列,请说明理由;(2)设,且对任意的,有意义,数列的前项和为.若,求的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】试题分析:A中两事件不是互斥事件;B中不是互斥事件;C中两事件既是互斥事件又是对立事件;D中两事件是互斥但不对立事件考点:互斥事件与对立事件2、B【解题分析】
利用诱导公式得到的值,再由同角三角函数的平方关系,结合角的范围,即可得答案.【题目详解】∵,又,∴.故选:B.【题目点拨】本题考查诱导公式、同角三角函数的平方关系,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意符号问题.3、B【解题分析】
对每一个选项逐一分析判断得解.【题目详解】A.∵M,N分别为VA,VC的中点,∴MN//AC,又AC⊥BC,∴MN与BC所成的角为90°,故C不正确;∵MN//AC,AC∩AB=A,∴MN//AB不成立,故A不正确.B.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,∵VA垂直⊙O所在的平面,BC⊂⊙O所在的平面,∴VA⊥BC,又AC∩VA=A,∴BC⊥平面VAC,又BC⊂平面VBC,∴平面VAC⊥平面VBC,故B正确;C.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,又A、B、C、O共面,∴OC与AC不垂直,∴OC⊥平面VAC不成立,故B不正确;∵M,N分别为VA,VC的中点,∴MN//AC,又AC⊥BC,∴MN与BC所成的角为90°,故C不正确;D.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,又A、B、C、O共面,∴OC与AC不垂直,∴OC⊥平面VAC不成立,故D不正确.故选B.【题目点拨】本题主要考查空间位置关系的证明,考查异面直线所成的角的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.4、C【解题分析】
由题意可知:点在反射光线上.设反射光线所在的直线方程为:,利用直线与圆的相切的性质即可得出.【题目详解】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,即.由相切的性质可得:,化为:,解得或.故选.【题目点拨】本题考查了直线与圆相切的性质、点到直线的距离公式、光线反射的性质,考查了推理能力与计算能力,属于中档题.5、C【解题分析】
根据均值定义列式计算可得的和,从而得它们的均值,再由方差公式可得,从而得方差.然后判断.【题目详解】由题可得:平均值为2,由,,所以变得不稳定.故选:C.【题目点拨】本题考查均值与方差的计算公式,考查方差的含义.属于基础题.6、D【解题分析】因为点M,P关于点N对称,所以由中点坐标公式可知.7、B【解题分析】分析:先根据向量数量积定义化简,再根据二倍角公式求值.详解:因为,所以选B.点睛:平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式;二是坐标公式;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.8、C【解题分析】
由题意得,故得平移后的解析式为,根据所的图象关于点对称可求得,从而可得,进而可得所求最小值.【题目详解】由题意得,将函数的图象向左平移个单位长度所得图象对应的解析式为,因为平移后的图象关于点对称,所以,故,又,所以.所以,由得,所以当或,即或时,函数取得最小值,且最小值为.故选C.【题目点拨】本题考查三角函数的性质的综合应用,解题的关键是求出参数的值,容易出现的错误是函数图象平移时弄错平移的方向和平移量,此时需要注意在水平方向上的平移或伸缩只是对变量而言的.9、C【解题分析】
由,则只需将函数的图象向左平移个单位长度.【题目详解】解:因为,所以要得到函数的图象,只需将函数的图象向左平移个单位长度.故选:C.【题目点拨】本题考查了三角函数图像的平移变换,属基础题.10、B【解题分析】
先求斜率,即倾斜角的正切值,易得.【题目详解】,可知,即,故选B【题目点拨】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】由二倍角公式可得:cos212、【解题分析】
由反三角函数的性质得到,即可求得函数的值域.【题目详解】由,则,,又,,即,函数的值域为.故答案:.【题目点拨】本题考查反三角函数的性质及其应用,属于基础题.13、【解题分析】
由体积为的一个正方体,棱长为,全面积为,则,,球的体积为,故答案为.考点:正方体与球的表面积及体积的算法.14、3【解题分析】
先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【题目详解】或当时,函数取得最小值:或(舍去)故答案为3【题目点拨】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.15、【解题分析】
用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值.【题目详解】设,是增函数,当时,,不等式化为,即,不等式在上恒成立,时,显然成立,,对上恒成立,由对勾函数性质知在是减函数,时,,∴,即.综上,.故答案为:.【题目点拨】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.16、【解题分析】试题分析:由题意得,解得,故答案为.考点:分层抽样.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3)【解题分析】
(1)由BB1⊥面ABC及线面垂直的性质可得AE⊥BB1,由AC=AB,E是BC的中点,及等腰三角形三线合一,可得AE⊥BC,结合线面垂直的判定定理可证得AE⊥面BB1C1C,进而由线面垂直的性质得到AE⊥B1C;(2)取B1C1的中点E1,连A1E1,E1C,根据异面直线夹角定义可得,∠E1A1C是异面直线A与A1C所成的角,设AC=AB=AA1=2,解三角形E1A1C可得答案.(3)连接AG,设P是AC的中点,过点P作PQ⊥AG于Q,连EP,EQ,则EP⊥AC,由直三棱锥的侧面与底面垂直,结合面面垂直的性质定理,可得EP⊥平面ACC1A1,进而由二面角的定义可得∠PQE是二面角C-AG-E的平面角.【题目详解】证明:(1)因为BB1⊥面ABC,AE⊂面ABC,所以AE⊥BB1由AB=AC,E为BC的中点得到AE⊥BC∵BC∩BB1=B∴AE⊥面BB1C1C∴AE⊥B1C解:(2)取B1C1的中点E1,连A1E1,E1C,则AE∥A1E1,∴∠E1A1C是异面直线AE与A1C所成的角.设AC=AB=AA1=2,则由∠BAC=90°,可得A1E1=AE=,A1C=2,E1C1=EC=BC=∴E1C==∵在△E1A1C中,cos∠E1A1C==所以异面直线AE与A1C所成的角为.(3)连接AG,设P是AC的中点,过点P作PQ⊥AG于Q,连EP,EQ,则EP⊥AC又∵平面ABC⊥平面ACC1A1∴EP⊥平面ACC1A1而PQ⊥AG∴EQ⊥AG.∴∠PQE是二面角C-AG-E的平面角.由EP=1,AP=1,PQ=,得tan∠PQE==所以二面角C-AG-E的平面角正切值是【题目点拨】本题是与二面角有关的立体几何综合题,主要考查了异面直线的夹角,线线垂直的判定,二面角等知识点,难度中档,熟练掌握线面垂直,线线垂直与面面垂直之间的转化及异面直线夹角及二面角的定义,是解答本题的关键.18、(1)证明见解析;(2).【解题分析】
(1)由面面垂直的性质定理得出平面,可得出,再推导出,利用线面垂直的判定定理得出平面,然后利用面面垂直的判定定理可得出平面平面;(2)推导出平面,计算出的面积,然后利用锥体体积公式可求得三棱锥的体积,进而得解.【题目详解】(1)因为四边形是矩形,故,又平面平面,平面平面,平面,所以平面,又面,所以,在等腰梯形中,,,因,故,,即,又,故平面,平面,所以平面平面;(2)的面积为,,平面,所以,平面,,故.【题目点拨】本题考查面面垂直的证明,同时也考查了利用三棱锥体积求参数,考查推理能力与计算能力,属于中等题.19、(1);(2)5.【解题分析】
(1)根据求出和的值,利用角平分线和二倍角公式求出,即可求出;(2)根据正弦定理求出,的关系,利用向量的夹角公式求出,可得,正弦定理可得答案【题目详解】解:(1)由,且,,,,则;(2)由正弦定理,得,即,,又,,由上两式解得,又由,得,解得【题目点拨】本题考查了二倍角公式和正弦定理的灵活运用和计算能力,是中档题.20、【解题分析】
求出直线的倾斜角,可得所求直线的倾斜角,从而可得斜率,再利用点斜式可得结果.【题目详解】因为直线的斜率为,所以其倾斜角为30°,所以,所求直线的倾斜角为60°故所求直线的斜率为,又所求直线经过点,所以其方程为,即,故答案为:.【题目点拨】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保设备安装工程委托施工合同
- 医药企业防尘网施工合同
- 医疗保健票据处理办法
- 餐饮业电梯施工安装工程合同
- 智能建筑网线铺设协议
- 科技期刊数字化出版技术指南
- 绿色建筑招投标法规体系精讲
- 城市交通监理管理规范
- 大型设备焊工劳动合同
- 物业维修技术员定向就业
- 山东省滨州市滨城区2023-2024学年八年级上学期期中考试数学试题
- 《新能源材料与器件》教学课件-05其他新能源技术
- 小学家长进课堂课件-认识桥梁
- 军队文职专用简历(2023年)
- KPMG笔试经典24题-36题详解(最终版本)
- 中职学校高考班家长会
- 餐饮企业日管控、周排查、月调度表格模板
- 先天性甲状腺功能减退症2015
- 《微观经济学》教案
- 医院药事管理委员会会议纪要汇编五篇
- 着色牙-四环素牙(口腔科课件)
评论
0/150
提交评论