版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省永州市东安县一中高一数学第二学期期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.平面内任一向量都可以表示成的形式,下列关于向量的说法中正确的是()A.向量的方向相同 B.向量中至少有一个是零向量C.向量的方向相反 D.当且仅当时,2.化为弧度是A. B. C. D.3.已知锐角满足,则()A. B. C. D.4.已知圆C与直线和直线都相切,且圆心C在直线上,则圆C的方程是()A. B.C. D.5.化成弧度制为()A. B. C. D.6.在四边形中,,,将沿折起,使平面平面,构成三棱锥,如图,则在三棱锥中,下列结论正确的是()A.平面平面B.平面平面C.平面平面D.平面平面7.已知等差数列的前项的和为,若,则等于()A.81 B.90 C.99 D.1808.若,,且与夹角为,则()A.3 B. C.2 D.9.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于A. B.C. D.10.数列的通项公式,其前项和为,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的圆心角为,半径为,则扇形的弧长为______.12.已知四棱锥的底面是边长为的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的侧面积为________.13.已知,,两圆和只有一条公切线,则的最小值为________14.已知直线平面,,那么在平面内过点P与直线m平行的直线有________条.15.已知,则的最小值是_______.16.如果事件A与事件B互斥,且,,则=.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角终边上有一点,求下列各式的值.(1);(2)18.如图,在四棱锥中,平面平面,四边形为矩形,,点,分别是,的中点.求证:(1)直线∥平面;(2)平面平面.19.如图,在△ABC中,A(5,–2),B(7,4),且AC边的中点M在y轴上,BC的中点N在x轴上.(1)求点C的坐标;(2)求△ABC的面积.20.数列中,,(为常数).(1)若,,成等差数列,求的值;(2)是否存在,使得为等比数列?并说明理由.21.已知向量的夹角为60°,且.(1)求与的值;(2)求与的夹角.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
根据平面向量的基本定理,若平面内任一向量都可以表示成的形式,构成一个基底,所以向量不共线.【题目详解】因为任一向量,根据平面向理的基本定理得,所以向量不共线,故A,C不正确.是一个基底,所以不能为零向量,故B不正确.因为不共线,且不能为零向量,所以若,当且仅当,故D正确.故选:D【题目点拨】本题主要考查平面向量的基本定理,还考查了理解辨析的能力,属于基础题.2、D【解题分析】
由于,则.【题目详解】因为,所以,故选D.【题目点拨】本题考查角度制与弧度制的互化.3、D【解题分析】
根据为锐角可求得,根据特殊角三角函数值可知,从而得到,进而求得结果.【题目详解】,又,即本题正确选项:【题目点拨】本题考查三角函数值的求解问题,关键是能够熟悉特殊角的三角函数值,根据角的范围确定特殊角的取值.4、B【解题分析】
设出圆的方程,利用圆心到直线的距离列出方程求解即可【题目详解】∵圆心在直线上,∴可设圆心为,设所求圆的方程为,则由题意,解得∴所求圆的方程为.选B【题目点拨】直线与圆的问题绝大多数都是转化为圆心到直线的距离公式进行求解5、A【解题分析】
利用角度化弧度公式可将化为对应的弧度数.【题目详解】由题意可得,故选A.【题目点拨】本题考查角度化弧度,充分利用公式进行计算,考查计算能力,属于基础题.6、D【解题分析】
折叠过程中,仍有,根据平面平面可证得平面,从而得到正确的选项.【题目详解】在直角梯形中,因为为等腰直角三角形,故,所以,故,折起后仍然满足.因为平面平面,平面,平面平面,所以平面,因平面,所以.又因为,,所以平面,因平面,所以平面平面.【题目点拨】面面垂直的判定可由线面垂直得到,而线面垂直可通过线线垂直得到,注意面中两条直线是相交的.由面面垂直也可得到线面垂直,注意线在面内且线垂直于两个平面的交线.7、B【解题分析】
根据已知得到的值,利用等差数列前项和公式以及等差数列下标和的性质,求得的值.【题目详解】依题意,所以,故选B.【题目点拨】本小题主要考查等差数列的性质,考查等差数列前项和的计算,属于基础题.8、B【解题分析】
由题意利用两个向量数量积的定义,求得的值,再根据,计算求得结果.【题目详解】由题意若,,且与夹角为,可得,.故选:B.【题目点拨】本题考查向量数量积的定义、向量的模的方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意不要错选成A答案.9、C【解题分析】
利用几何概型的计算概率的方法解决本题,关键要弄准所求的随机事件发生的区域的面积和事件总体的区域面积,通过相除的方法完成本题的解答.【题目详解】解:由几何概型的计算方法,可以得出所求事件的概率为P=.故选C.【点评】本题考查概率的计算,考查几何概型的辨别,考查学生通过比例的方法计算概率的问题,考查学生分析问题解决问题的能力,考查学生几何图形面积的计算方法,属于基本题型.10、B【解题分析】
依据为周期函数,得到,并项求和,即可求出的值。【题目详解】因为为周期函数,周期为4,所以,,故选B。【题目点拨】本题主要考查数列求和方法——并项求和法的应用,以及三角函数的周期性,分论讨论思想,意在考查学生的推理论证和计算能力。二、填空题:本大题共6小题,每小题5分,共30分。11、9【解题分析】
由扇形的弧长公式运算可得解.【题目详解】解:由扇形的弧长公式得:,故答案为9.【题目点拨】本题考查了扇形的弧长,属基础题.12、【解题分析】
先求出四棱锥的底面对角线的长度,结合勾股定理可求出四棱锥的高,然后由圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,可知四条侧棱的中点连线为正方形,其对角线为圆柱底面的直径,圆柱的高为四棱锥的高的一半,分别求解可求出圆柱的侧面积.【题目详解】由题可知,四棱锥是正四棱锥,四棱锥的四条侧棱的中点连线为正方形,边长为,该正方形对角线的长为1,则圆柱的底面半径为,四棱锥的底面是边长为的正方形,其对角线长为2,则四棱锥的高为,故圆柱的高为1,所以圆柱的侧面积为.【题目点拨】本题主要考查了空间几何体的结构特征,考查了学生的空间想象能力与计算求解能力,属于中档题.13、9【解题分析】
两圆只有一条公切线,可以判断两圆是内切关系,可以得到一个等式,结合这个等式,可以求出的最小值.【题目详解】,圆心为,半径为2;,圆心为,半径为1.因为两圆只有一条公切线,所以两圆是内切关系,即,于是有(当且仅当取等号),因此的最小值为9.【题目点拨】本题考查了圆与圆的位置关系,考查了基本不等式的应用,考查了数学运算能力.14、1【解题分析】
利用线面平行的性质定理来进行解答.【题目详解】过直线与点可确定一个平面,由于为公共点,所以两平面相交,不妨设交线为,因为直线平面,所以,其它过点的直线都与相交,所以与也不会平行,所以过点且平行于的直线只有一条,在平面内,故答案为:1.【题目点拨】本题考查线面平行的性质定理,是基础题.15、3【解题分析】
根据,将所求等式化为,由基本不等式,当a=b时取到最小,可得最小值。【题目详解】因为,所以,所以(当且仅当时,等号成立).【题目点拨】本题考查基本不等式,解题关键是构造不等式,并且要注意取最小值时等号能否成立。16、0.5【解题分析】
表示事件A与事件B满足其中之一占整体的占比.所以根据互斥事件概率公式求解.【题目详解】【题目点拨】此题考查互斥事件概率公式,关键点在于理解清楚题目概率表示的实际含义,属于简单题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)根据三角函数的定义,可知;(2)原式上下同时除以,变为表示的式子,即可求得结果.【题目详解】(1)(2),原式上下同时除以.【题目点拨】本题考查了三角函数的定义,属于基础题型.18、(1)见解析(2)见解析【解题分析】
(1)取中点,连接,,证得,利用线面平行的判定定理,即可证得直线∥平面;(2)利用线面垂直的判定定理,证得,再利用面面垂直的判定定理,即可得到平面平面.【题目详解】(1)取中点,连接,.在中,,分别为,中点,则且,又四边形为矩形,为中点,且,所以,故四边形为平行四边形,从而,又,,所以直线.(2)因为矩形,所以,又平面,面,,所以,又,则,又,,所以,又,所以平面平面.【题目点拨】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.19、(1)(–5,–4)(2)【解题分析】
(1)设点,根据题意写出关于的方程组,得到点坐标;(2)由两点间距离公式求出,再由两点得到直线的方程,利用点到直线的距离公式,求出点到的距离,由三角形面积公式得到答案.【题目详解】(1)由题意,设点,根据AC边的中点M在y轴上,BC的中点N在x轴上,根据中点公式,可得,解得,所以点的坐标是.(2)因为,得.,所以直线的方程为,即,故点到直线的距离,所以的面积.【题目点拨】本题考查中点坐标公式,两点间距离公式,点到直线的距离公式,属于简单题.20、(Ⅰ)p=1;(Ⅱ)存在实数,使得{an}为等比数列【解题分析】
(Ⅰ)由已知求得a1,a4,再由-a1,,a4成等差数列列式求p的值;(Ⅱ)假设存在p,使得{an}为等比数列,可得,求解p值,验证得答案.【题目详解】(Ⅰ)由a1=1,,得,,则,,,.由,,a4成等差数列,得a1=a4-a1,即,解得:p=1;(Ⅱ)假设存在p,使得{an}
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 暨南大学《劳动经济学》2021-2022学年第一学期期末试卷
- 品质部IPQC工作总结
- 二零二四年度物联网平台运营合同2篇
- 科学计算语言Julia及MWORKS实践 课件 30-一阶有控倒立摆
- 2024年汽车销售顾问年终总结心得
- 2024保洁个人工作总结
- 老年脊柱手术
- 铁路安检培训
- 道路管理规范
- 躁狂患症护理查房
- 髂股动脉长段闭塞腔内治疗的技术问题课件
- 线路工程监理细则
- 正规的公司报案材料范文共8篇
- 天燃气过户协议书(3篇)
- 信息管理中心科员安全职责考核表
- 合理安排时间 教案 综合实践活动七年级上册 教科版
- DB32T 3916-2020 建筑地基基础检测规程
- 禁食野生动物主题班会PPT
- (完整版)《心理咨询流程图》及心理咨询常规流程
- 《装配式混凝土结构建筑》考试复习题库(含答案)
- 宇宙的奥秘课件
评论
0/150
提交评论