




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽六安市舒城中学2024届高一数学第二学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.正方体中,直线与所成角的余弦值为()A. B. C. D.2.平面平面,直线,,那么直线与直线的位置关系一定是()A.平行 B.异面 C.垂直 D.不相交3.函数的单调减区间为A.B.C.D.4.已知一组数1,1,2,3,5,8,,21,34,55,按这组数的规律,则应为()A.11 B.12 C.13 D.145.在平行四边形中,为一条对角线,,,则=()A.(2,4) B.(3,5) C.(1,1) D.(-1,-1)6.对于复数,定义映射.若复数在映射作用下对应复数,则复数在复平面内对应的点位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限7.等比数列中,,则等于是()A. B.4 C. D.8.某几何体的三视图如图所示,它的体积为()A.12π B.45π C.57π D.81π9.我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为A.分 B.分 C.分 D.分10.已知角α的终边过点P(2sin60°,-2cos60°),则sinα的值为()A. B. C.- D.-二、填空题:本大题共6小题,每小题5分,共30分。11.若则____________12.函数在的值域是______________.13.在正数数列an中,a1=1,且点an,an-114.设,用,表示所有形如的正整数集合,其中且,为集合中的所有元素之和,则的通项公式为_______15.如图所示,在正三棱柱中,是的中点,,则异面直线与所成的角为____.16.已知数列的首项,其前项和为,且,若单调递增,则的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的前项和为,公比,,.(1)求等比数列的通项公式;(2)设,求的前项和.18.如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求点在上,点在上,且对角线过点,已知米,米.(1)要使矩形的面积大于64平方米,则的长应在什么范围内?(2)当的长为多少时,矩形花坛的面积最小?并求出最小值.19.某校进行学业水平模拟测试,随机抽取了名学生的数学成绩(满分分),绘制频率分布直方图,成绩不低于分的评定为“优秀”.(1)从该校随机选取一名学生,其数学成绩评定为“优秀”的概率;(2)估计该校数学平均分(同一组数据用该组区间的中点值作代表).20.设函数.(1)求函数的最小正周期.(2)求函数的单调递减区间;(3)设为的三个内角,若,,且为锐角,求.21.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
作出相关图形,通过平行将异面直线所成角转化为共面直线所成角.【题目详解】作出相关图形,由于,所以直线与所成角即为直线与所成角,由于为等边三角形,于是所成角余弦值为,故答案选C.【题目点拨】本题主要考查异面直线所成角的余弦值,难度不大.2、D【解题分析】
利用空间中线线、线面、面面的位置关系得出直线与直线没有公共点.【题目详解】由题平面平面,直线,则直线与直线的位置关系平行或异面,即两直线没有公共点,不相交.故选D.【题目点拨】本题考查空间中两条直线的位置关系,属于简单题.3、A【解题分析】
根据正弦函数的单调递减区间,列出不等式求解,即可得出结果.【题目详解】的单调减区间为,,解得函数的单调减区间为.故选A.【题目点拨】本题主要考查三角函数的单调性,熟记正弦函数的单调区间即可,属于常考题型.4、C【解题分析】
易得从第三项开始数列的每项都为前两项之和,再求解即可.【题目详解】易得从第三项开始数列的每项都为前两项之和,故.故选:C【题目点拨】该数列为“斐波那契数列”,从第三项开始数列的每项都为前两项之和,属于基础题.5、C【解题分析】试题分析:,故选C.考点:平面向量的线性运算.6、A【解题分析】,对应点,在第四象限.7、B【解题分析】
利用等比数列通项公式直接求解即可.【题目详解】因为是等比数列,所以.故选:B【题目点拨】本题考查了等比数列通项公式的应用,属于基础题.8、C【解题分析】由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C9、B【解题分析】
首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出,进而求出立春”时日影长度为.【题目详解】解:一年有二十四个节气,每相邻两个节气之间的日影长度差为分,且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.,解得,“立春”时日影长度为:分.故选B.【题目点拨】本题考查等差数列的性质等基础知识,考查运算求解能力,利用等差数列的性质直接求解.10、D【解题分析】
利用特殊角的三角函数值得出点的坐标,然后利用正弦的定义,求得的值.【题目详解】依题意可知,所以,故选D.【题目点拨】本小题主要考查三角函数的定义,考查特殊角的三角函数值,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】因为,所以=.故填.12、【解题分析】
利用,即可得出.【题目详解】解:由已知,,又
,
故答案为:.【题目点拨】本题考查了反三角函数的求值、单调性,考查了推理能力与计算能力,属于中档题.13、2【解题分析】
在正数数列an中,由点an,an-1在直线x-2y=0上,知a【题目详解】由题意,在正数数列an中,a1=1,且a可得an-2即an因为a1=1,所以数列所以Sn故答案为2n【题目点拨】本题主要考查了等比数列的定义,以及等比数列的前n项和公式的应用,同时涉及到数列与解析几何的综合运用,是一道好题.解题时要认真审题,仔细解答,注意等比数列的前n项和公式和通项公式的灵活运用,着重考查了推理与运算能力,属于中档试题.14、【解题分析】
把集合中每个数都表示为2的0到的指数幂相加的形式,并确定,,,,每个数都出现次,于是利用等比数列求和公式计算,可求出数列的通项公式.【题目详解】由题意可知,,,,是0,1,2,,的一个排列,且集合中共有个数,若把集合中每个数表示为的形式,则,,,,每个数都出现次,因此,,故答案为:.【题目点拨】本题以数列新定义为问题背景,考查等比数列的求和公式,考查学生的理解能力与计算能力,属于中等题.15、【解题分析】
要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角.【题目详解】取的中点E,连AE,,易证,∴为异面直线与所成角,设等边三角形边长为,易算得∴在∴故答案为【题目点拨】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求.16、【解题分析】由可得:两式相减得:两式相减可得:数列,,...是以为公差的等差数列,数列,,...是以为公差的等差数列将代入及可得:将代入可得要使得,恒成立只需要即可解得则的取值范围是点睛:本题考查了数列的递推关系求通项,在含有的条件中,利用来求通项,本题利用减法运算求出数列隔一项为等差数列,结合和数列为增数列求出结果,本题需要利用条件递推,有一点难度.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bn=n,,由裂项相消求和可得答案.【题目详解】(1)等比数列的前项和为,公比,①,②.②﹣①,得,则,又,所以,因为,所以,所以,所以;(2),所以前项和.【题目点拨】裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如或.18、(1),(2)时,【解题分析】
(1)设,有题知,得到,再计算矩形的面积,解不等式即可.(2)首先将花坛的面积化简为,再利用基本不等式的性质即可求出面积的最小值.【题目详解】(1)设,.因为四边形为矩形,所以.即:,解得:.所以,.所以,,解得或.因为,所以或.所以的长度范围是.(2)因为.当且仅当,即时取“”.所以当时,.【题目点拨】本题第一问考查了函数模型,第二问考查了基本不等式,属于中档题.19、(1);(2)该校数学平均分为.【解题分析】
(1)计算后两个矩形的面积之和,可得出结果;(2)将每个矩形底边中点值乘以相应矩形的面积,再将这些积相加可得出该校数学平均分.【题目详解】(1)从该校随机选取一名学生,成绩不低于分的评定为“优秀”的频率为,所以,数学成绩评定为“优秀”的概率为;(2)估计该校数学平均分.【题目点拨】本题考查频率分布直方图频率和平均数的计算,解题时要熟悉频率和平均数的计算原则,考查计算能力,属于基础题.20、(1)(2)减区间为,(3)【解题分析】
利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,得出结论.利用正弦函数的单调性,求得函数的单调递减区间.利用同角三角函数的基本关系、两角和的正弦公式,求得的值.【题目详解】函数,故它的最小正周期为.对于函数,令,求得,可得它的减区间为,.中,若,.若,,为锐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 东北电力大学《韩国文学作品》2023-2024学年第一学期期末试卷
- 中国药科大学《市场营销案例分析》2023-2024学年第二学期期末试卷
- 山东省滨州市卓越重点中学2025届初三下学期第二次模拟考化学试题试卷含解析
- 2024-2025学年西藏林芝第一中学高三5月半月考物理试题含解析
- 辽宁对外经贸学院《应急救护》2023-2024学年第二学期期末试卷
- 西南大学附中2025年高三第二次教学质量检查生物试题含解析
- 云南警官学院《精神医学实验技术》2023-2024学年第一学期期末试卷
- 福建对外经济贸易职业技术学院《建筑施工(实验)》2023-2024学年第二学期期末试卷
- 四川省宜宾市南溪区市级名校2024-2025学年初三5月模拟(三模)英语试题理试题含答案
- 广州民航职业技术学院《影视照明》2023-2024学年第二学期期末试卷
- DB31T-氢基绿色燃料评价方法及要求
- 2024年中国家具电商行业市场竞争格局及投资方向研究报告(智研咨询)
- 小学四年级下册口算题
- 创造性思维与创新方法智慧树知到期末考试答案章节答案2024年大连理工大学
- 医院检验科生物安全手册 收藏版
- 张成福《公共管理学》(修订版)课后习题详解
- 2024年安徽省中考英语真题(原卷版+解析版)
- 氟化碳作为二次电池正极材料的研究
- 2024年黑龙江齐翔建设投资集团有限公司招聘笔试冲刺题(带答案解析)
- 2024年佛山市高三二模普通高中教学质量检测二 数学试卷(含答案)
- 福建省国土空间规划(2021-2035年)公众版
评论
0/150
提交评论