版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市滨海新区大港八中2024届数学高一第二学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,,设,,且,则的值为()A.0 B.3 C.15 D.182.定义在上的函数若关于的方程(其中)有个不同的实根,,…,,则()A. B. C. D.3.设m>1,在约束条件y≥xA.1,1+2C.(1,3) D.(3,+∞)4.如图,是的直观图,其中轴,轴,那么是()A.等腰三角形 B.钝角三角形 C.等腰直角三角形 D.直角三角形5.某社区义工队有24名成员,他们年龄的茎叶图如下表所示,先将他们按年龄从小到大编号为1至24号,再用系统抽样方法抽出6人组成一个工作小组,则这个小组年龄不超过55岁的人数为()3940112551366778889600123345A.1 B.2 C.3 D.46.下列说法正确的是()A.小于的角是锐角 B.钝角是第二象限的角C.第二象限的角大于第一象限的角 D.若角与角的终边相同,则7.在中,内角,,的对边分别为,,,且=.则A. B. C. D.8.在△ABC中,,则△ABC为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰三角形或直角三角形9.与直线平行,且与直线交于轴上的同一点的直线方程是()A. B. C. D.10.先后抛掷枚均匀的硬币,至少出现一次反面的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等差数列前项和为,已知,,则_____.12.已知在中,角A,B,C的对边分别为a,b,c,,,的面积等于,则外接圆的面积为______.13.设数列的通项公式为,则_____.14.已知双曲线:的右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线于交、两点,若,则的离心率为__________.15.若数列的前项和为,则该数列的通项公式为______.16.如图,正方体中,的中点为,的中点为,为棱上一点,则异面直线与所成角的大小为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,(,为常数).(1)若方程有两个异号实数解,求实数的取值范围;(2)若的图像与轴有3个交点,求实数的取值范围;(3)记,若在上单调递增,求实数的取值范围.18.已知(1)求的值;(2)求的值.19.在中,角的对边分别为.已知(1)若,,求的面积;(2)若的面积为,且,求的值.20.已知等差数列中,与的等差中项为,.(1)求的通项公式;(2)令,求证:数列的前项和.21.如图所示,已知三棱锥的侧棱长都为1,底面ABC是边长为的正三角形.(1)求三棱锥的表面积;(2)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
首先分别求出向量,然后再用两向量平行的坐标表示,最后求值.【题目详解】,,当时,,解得.故选B.【题目点拨】本题考查了向量平行的坐标表示,属于基础题型.2、C【解题分析】画出函数的图象,如图,由图可知函数的图象关于对称,解方程方程,得或,时有三个根,,时有两个根,所以关于的方程共有五个根,,,故选C.【方法点睛】本题主要考查函数的图象与性质以及函数与方程思想、数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.3、A【解题分析】试题分析:∵,故直线与直线交于点,目标函数对应的直线与直线垂直,且在点,取得最大值,其关系如图所示:即,解得,又∵,解得,选:A.考点:简单线性规划的应用.【方法点睛】本题考查的知识点是简单线性规划的应用,我们可以判断直线的倾斜角位于区间上,由此我们不难判断出满足约束条件的平面区域的形状,其中根据平面直线方程判断出目标函数对应的直线与直线垂直,且在点取得最大值,并由此构造出关于的不等式组是解答本题的关键.4、D【解题分析】
利用斜二测画法中平行于坐标轴的直线,平行关系不变这个原则得出的形状.【题目详解】在斜二测画法中,平行于坐标轴的直线,平行关系不变,则在原图形中,轴,轴,所以,,因此,是直角三角形,故选D.【题目点拨】本题考查斜二测直观图还原,解题时要注意直观图的还原原则,并注意各线段长度的变化,考查分析能力,属于基础题.5、B【解题分析】
求出样本间隔,结合茎叶图求出年龄不超过55岁的有8人,然后进行计算即可.【题目详解】解:样本间隔为,年龄不超过55岁的有8人,则这个小组中年龄不超过55岁的人数为人.故选:.【题目点拨】本题主要考查茎叶图以及系统抽样的应用,求出样本间隔是解决本题的关键,属于基础题.6、B【解题分析】
可通过举例的方式验证选项的对错.【题目详解】A:负角不是锐角,比如“”的角,故错误;B:钝角范围是“”,是第二象限的角,故正确;C:第二象限角取“”,第一象限角取“”,故错误;D:当角与角的终边相同,则.故选B.【题目点拨】本题考查任意角的概念,难度较易.7、C【解题分析】试题分析:由正弦定理得,,由于,,,故答案为C.考点:正弦定理的应用.8、C【解题分析】
直接利用正弦定理余弦定理化简得到,即得解.【题目详解】由已知得,由正、余弦定理得,即,即,故是直角三角形.故答案为:C【题目点拨】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的掌握水平和分析推理水平.9、A【解题分析】
直线交于轴上的点为,与直线平行得到斜率,根据点斜式得到答案.【题目详解】与直线平行直线交于轴上的点为设直线方程为:代入交点得到即故答案选A【题目点拨】本题考查了直线的平行关系,直线与坐标轴的交点,属于基础题型.10、D【解题分析】
先求得全是正面的概率,用减去这个概率求得至少出现一次反面的概率.【题目详解】基本事件的总数为,全是正面的的事件数为,故全是正面的概率为,所以至少出现一次反面的概率为,故选D.【题目点拨】本小题主要考查古典概型概率计算,考查正难则反的思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】
首先根据、即可求出和,从而求出。【题目详解】,①,②①②得,,即,∴,即,∴,故答案为:1.【题目点拨】本题主要考查了解方程,以及等差数列的性质和前项和。其中等差数列的性质:若则比较常考,需理解掌握。12、4π【解题分析】
利用三角形面积公式求解,再利用余弦定理求得,进而得到外接圆半径,再求面积即可.【题目详解】由,解得..解得.,解得.∴△ABC外接圆的面积为4π.故答案为:4π.【题目点拨】本题主要考查了解三角形中正余弦与面积公式的运用,属于基础题型.13、【解题分析】
根据数列的通项式求出前项和,再极限的思想即可解决此题。【题目详解】数列的通项公式为,则,则答案.故为:.【题目点拨】本题主要考查了给出数列的通项式求前项和以及极限。求数列的前常用的方法有错位相减、分组求和、列项相消等。本题主要利用了分组求和的方法。14、【解题分析】如图所示,由题意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=b,∴|OP|=.设双曲线C的一条渐近线y=x的倾斜角为θ,则tanθ=.又tanθ=,∴,解得a2=3b2,∴e=.答案:点睛:求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,再根据和转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围).15、【解题分析】
由,可得出,再令,可计算出,然后检验是否满足在时的表达式,由此可得出数列的通项公式.【题目详解】由题意可知,当时,;当时,.又不满足.因此,.故答案为:.【题目点拨】本题考查利用求,一般利用来计算,但要对是否满足进行检验,考查运算求解能力,属于中等题.16、【解题分析】
根据题意得到直线MP运动起来构成平面,可得到面,进而得到结果.【题目详解】取的中点O连接,,根据题意可得到直线MP是一条动直线,当点P变动时直线就构成了平面,因为MO均为线段的中点,故得到,四边形为平行四边形,面,故得到,又面,进而得到.故夹角为.故答案为.【题目点拨】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)或【解题分析】
(1)由题意,可知只要,即可使得方程有两个异号的实数解,得到答案;(2)由题意,得,则,再由的图象与轴由3个交点,列出相应的条件,即可求解.(3)由题意得,分类讨论确定函数的单调性,即可得到答案.【题目详解】由题可得,,与轴有一个交点;与有两个交点综上可得:实数的取值范围或【题目点拨】本题主要考查了函数与方程的综合应用,以及分段函数的性质的综合应用,其中解答中认真审题,合理分类讨论及利用函数的基本性质求解是解答的关键,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及分类讨论思想和转化思想的应用.18、(1)20,(2)【解题分析】
(1)先利用同角三角函数的基本关系求得cos和tan的值,进而利用二倍角公式把sin2展开,把sin和cos的值代入即可.(2)先利用诱导公式使=tan(﹣),再利用正切的两角和公式展开后,把tanα的值代入即可求得答案.【题目详解】(1)由,得,所以=(2)∵,∴【题目点拨】本题主要考查了三角函数的化简求值的问题.要求学生能灵活运用三角函数的基本公式.19、(1);(2).【解题分析】
(1)先根据计算出与,再利用余弦定理求出b边,最后利用求出答案;(2)利用正弦定理将等式化为变得关系,再利用余弦定理化为与的关系式,再结合面积求出c的值.【题目详解】解:(1)因为,所以.又,所以.因为,,且,所以,解得,所以.(2)因为,由正弦定理,得.又,所以.又,得,所以,所以.【题目点拨】本题考查正余弦定理解三角形,属于基础题.20、(1)(2)见解析【解题分析】
(1)利用和表示出和,解方程求得和;根据等差数列通项公式求得结果;(2)整理出的通项公式,利用裂项相消法可求得,根据可证得结论.【题目详解】(1)设数列的公差为则,解得:(2)由(1)知:,即【题目点拨】本题考查等差数列通项公式的求解、裂项相消法求解数列的前项和;关键是能够将
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度养老产业资金入股合同
- 2025年度酒吧转让附带广告宣传及公关活动合同范本
- 跨平台内容制作与媒体融合实践
- 2025年度人工智能企业股权收购与技术研发合同
- 2025年度职业经理人任期责任与权益保障合同
- 2025年度黄金质押抵押贷款合同
- 2025年度生物制药产业股权投资合同解除协议
- 二零二五年度停车场租赁合同全新版
- 2025年度河北省文化产业园租赁合同及文化创意服务协议
- 2025年度医疗行业医护人员聘用与保障合同
- 江西省部分学校2024-2025学年高三上学期1月期末英语试题(含解析无听力音频有听力原文)
- GA/T 2145-2024法庭科学涉火案件物证检验实验室建设技术规范
- 2024年度窑炉施工协议详例细则版B版
- 尿毒症替代治疗
- 【课件】2025届高考英语一轮复习小作文讲解课件
- 基底节脑出血护理查房
- 工程公司总经理年终总结
- 2024年海南省高考地理试卷(含答案)
- 【企业盈利能力探析的国内外文献综述2400字】
- 三年级上册数学口算题1000道带答案
- 苏教版(2024新版)一年级上册科学全册教案教学设计
评论
0/150
提交评论