2024届河北省石家庄市外国语学校数学高一下期末质量检测试题含解析_第1页
2024届河北省石家庄市外国语学校数学高一下期末质量检测试题含解析_第2页
2024届河北省石家庄市外国语学校数学高一下期末质量检测试题含解析_第3页
2024届河北省石家庄市外国语学校数学高一下期末质量检测试题含解析_第4页
2024届河北省石家庄市外国语学校数学高一下期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省石家庄市外国语学校数学高一下期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则2.如图,是圆的直径,,假设你往圆内随机撒一粒黄豆,则它落到阴影部分的概率为()A. B. C. D.3.将函数的图象上各点沿轴向右平移个单位长度,所得函数图象的一个对称中心为()A. B. C. D.4.在中,角A,B,C所对的边分别为a,b,c,若,,,则满足条件的的个数为()A.0 B.1 C.2 D.无数多个5.已知菱形的边长为,则()A. B. C. D.6.已知,下列不等式中成立的是()A. B. C. D.7.△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-,则=A.6 B.5 C.4 D.38.已知某几何体的三视图是如图所示的三个直角三角形,则该几何体的外接球的表面积为()A.17π B.34π C.51π D.68π9.某学校的A,B,C三个社团分别有学生人,人,人,若采用分层抽样的方法从三个社团中共抽取人参加某项活动,则从A社团中应抽取的学生人数为()A.2 B.4 C.5 D.610.若,且,则“”是“函数有零点”的(

)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.设,,为三条不同的直线,,为两个不同的平面,下列命题中正确的是______.(1)若,,,则;(2)若,,,则;(3)若,,,,则;(4)若,,,则.12.已知等差数列的公差为2,若成等比数列,则________.13.将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)①g(x)的最小正周期为4π;②g(x)在区间[0,]上单调递减;③g(x)图象的一条对称轴为x;④g(x)图象的一个对称中心为(,0).14.函数的最小正周期为________.15.已知数列从第项起每项都是它前面各项的和,且,则的通项公式是__________.16.已知,,若,则____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的单调递增区间;(2)求在区间的最大值和最小值.18.某校从高一年级学生中随机抽取60名学生,将期中考试的物理成绩(均为整数)分成六段:,,,…,后得到如图频率分布直方图.(1)根据频率分布直方图,估计众数和中位数;(2)用分层抽样的方法从的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,求这两人的分数至少一人落在的概率.19.在直三棱柱中,,,,分别是,的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.20.某工厂要制造A种电子装置45台,B种电子装置55台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2m2,可做A、B的外壳分别为3个和5个,乙种薄钢板每张面积3m2,可做A、B的外壳分别为6个和6个,求两种薄钢板各用多少张,才能使总的面积最小.21.已知,,,且.(1)若,求的值;(2)设,,若的最大值为,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

根据各选项的条件及结论,可画出图形或想象图形,再结合平行、垂直的判定定理即可找出正确选项.【题目详解】选项A错误,同时和一个平面平行的两直线不一定平行,可能相交,可能异面;选项B错误,两平面平行,两平面内的直线不一定平行,可能异面;选项C错误,一个平面内垂直于两平面交线的直线,不一定和另一平面垂直,可能斜交;选项D正确,由,便得,又,,即.故选:D.【题目点拨】本题考查空间直线位置关系的判定,这种位置关系的判断题,可以举反例或者用定理简单证明,属于基础题.2、B【解题分析】

先根据条件计算出阴影部分的面积,然后计算出整个圆的面积,利用几何概型中的面积模型即可计算出对应的概率.【题目详解】设圆的半径为,因为,所以,又因为,所以落到阴影部分的概率为.故选:B.【题目点拨】本题考查几何概型中的面积模型的简单应用,难度较易.注意几何概型的常见概率公式:.3、A【解题分析】

先求得图象变换后的解析式,再根据正弦函数对称中心,求出正确选项.【题目详解】向右平移的单位长度,得到,由解得,当时,对称中心为,故选A.【题目点拨】本小题主要考查三角函数图象变换,考查三角函数对称中心的求法,属于基础题.4、B【解题分析】

直接由正弦定理分析判断得解.【题目详解】由正弦定理得,所以C只有一解,所以三角形只有一解.故选:B【题目点拨】本题主要考查正弦定理的应用,意在考查学生对这些知识的理解掌握水平.5、D【解题分析】

由菱形可直接得出所求两向量的模长及夹角,直接利用向量数量积公式即可.【题目详解】由菱形的性质可以得出:所以选择D【题目点拨】直接考查向量数量积公式,属于简单题6、A【解题分析】

逐个选项进行判断即可.【题目详解】A选项,因为,所以.当时即不满足选项B,C,D.故选A.【题目点拨】此题考查不等式的基本性质,是基础题.7、A【解题分析】

利用余弦定理推论得出a,b,c关系,在结合正弦定理边角互换列出方程,解出结果.【题目详解】详解:由已知及正弦定理可得,由余弦定理推论可得,故选A.【题目点拨】本题考查正弦定理及余弦定理推论的应用.8、B【解题分析】

由三视图还原出原几何体,得几何体的结构(特别是垂直关系),从而确定其外接球球心位置,得球半径.【题目详解】由三视图知原几何体是三棱锥,如图,平面,平面.由这两个线面垂直,得,因此的中点到四顶点的距离相等,即为外接球球心.由三视图得,,∴.故选:B.【题目点拨】本题考查三棱锥外接球表面积,考查三视图.解题关键是由三视图还原出原几何体,确定几何体的结构,找到外接球球心.9、B【解题分析】

分层抽样每部分占比一样,通过A,B,C三个社团为,易得A中的人数。【题目详解】A,B,C三个社团人数比为,所以12中A有人,B有人,C有人。故选:B【题目点拨】此题考查分层抽样原理,根据抽样前后每部分占比一样求解即可,属于简单题目。10、A【解题分析】

结合函数零点的定义,利用充分条件和必要条件的定义进行判断,即可得出答案.【题目详解】由题意,当时,,函数与有交点,故函数有零点;当有零点时,不一定取,只要满足都符合题意.所以“”是“函数有零点”的充分不必要条件.故答案为:A【题目点拨】本题主要考查了函数零点的概念,以及对数函数的图象与性质的应用,其中解答中熟记函数零点的定义,以及对数函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、(1)【解题分析】

利用线线平行的传递性、线面垂直的判定定理判定.【题目详解】(1),,,则,正确(2)若,,,则,错误(3)若,则不成立,错误(4)若,,,则,错误【题目点拨】本题主要考查线面垂直的判定定理判定,考查了空间想象能力,属于中档题.12、【解题分析】

利用等差数列{an}的公差为1,a1,a3,a4成等比数列,求出a1,即可求出a1.【题目详解】∵等差数列{an}的公差为1,a1,a3,a4成等比数列,

∴(a1+4)1=a1(a1+2),

∴a1=-8,

∴a1=-2.

故答案为-2..【题目点拨】本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,属基础题..13、②④.【解题分析】

利用函数的图象的变换规律求得的解析式,再利用三角函数的周期性、单调性、图象的对称性,即可求解,得到答案.【题目详解】由题意,将函数的图象向左平移个单位长度后,得到的图象,则函数的最小正周期为,所以①错误的;当时,,故在区间单调递减,所以②正确;当时,,则不是函数的对称轴,所以③错误;当时,,则是函数的对称中心,所以④正确;所以结论正确的有②④.【题目点拨】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的判定,其中解答熟记三角函数的图象变换,以及三角函数的图象与性质,准确判定是解答的关键,着重考查了推理与运算能力,属于中档试题.14、.【解题分析】

根据正切型函数的周期公式可计算出函数的最小正周期.【题目详解】由正切型函数的周期公式得,因此,函数的最小正周期为,故答案为.【题目点拨】本题考查正切型函数周期的求解,解题的关键在于正切型函数周期公式的应用,考查计算能力,属于基础题.15、【解题分析】

列举,可找到是从第项起的等比数列,由首项和公比即可得出通项公式.【题目详解】解:,即,所以是从第项起首项,公比的等比数列.通项公式为:故答案为:【题目点拨】本题考查数列的通项公式,可根据递推公式求出.16、【解题分析】

由,,得的坐标,根据得,由向量数量积的坐标表示即可得结果.【题目详解】∵,,∴又∵,∴,即,所以,解得,故答案为.【题目点拨】本题主要考查了向量的坐标运算,两向量垂直与数量积的关系,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2),【解题分析】

(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值.【题目详解】解:(1)令,解得,即函数的单调递增区间为,(2)由(1)知所以当,即时,当,即时,【题目点拨】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.18、(1)众数为75,中位数为73.33;(2).【解题分析】

(1)由频率分布直方图能求出a=0.1.由此能求出众数和中位数;(2)用分层抽样的方法从[40,60)的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,基本事件总数,这两人的分数至少一人落在[50,60)包含的基本事件个数,由此能求出这两人的分数至少一人落在[50,60)的概率.【题目详解】(1)由频率分布直方图得:,

解得,

所以众数为:,的频率为,

的频率为,

中位数为:.(2)用分层抽样的方法从的学生中抽取一个容量为5的样本,

的频率为0.1,的频率为0.15,

中抽到人,中抽取人,从这五人中任选两人参加补考,

基本事件总数,这两人的分数至少一人落在包含的基本事件个数,所以这两人的分数至少一人落在的概率.【题目点拨】在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率19、(1)证明见解析。(2)【解题分析】

(1)首先根据已知得到,再根据线面平行的判定即可得到平面.(2)首先根据线面垂直的判定证明平面,即可找到为与平面所成角,在计算其正弦值即可.【题目详解】(1)因为分别是,的中点,所以四边形为平行四边形,即.平面,所以平面.(2)因为,为中点,所以.平面.所以为与平面所成角.在中,,,所以,.在中,,,所以.【题目点拨】本题第一问考查线面平行的判定,本题第二问考查线面成角,属于中档题.20、甲、乙两种薄钢板各5张,能保证制造A、B的两种外壳的用量,同时又能使用料总面积最小.【解题分析】

本题可先将甲种薄钢板设为x张,乙种薄钢板设为y张,然后根据题意,得出两个不等式关系,也就是3x+6y≥45、5x+6y≥55以及薄钢板的总面积是z=2x+3y,然后通过线性规划画出图像并求出总面积z=2x+3y的最小值,最后得出结果.【题目详解】设甲种薄钢板x张,乙种薄钢板y张,则可做A种产品外壳3x+6y个,B种产品外壳5x+6y个,由题意可得3x+6y≥455x+6y≥55x≥0,y≥0,薄钢板的总面积是可行域的阴影部分如图所示,其中l1:3x+6y=45、l2:因目标函数z=2x+3y在可行域上的最小值在区域边界的A5此时z的最小值为2×5+3×5=25即甲、乙两种薄钢板各5张,能保证制造A、【题目点拨】(1)利用线性规划求目标函数最值的步骤①作图:画出约束条件所确定的平面区域和目标函数所表示的平面直角坐标系中的任意一条直线l;②平移:将l平行移动,以确定最优解所对应的点的位置.有时需要进行目标函数l和可行域边界的斜率的大小比较;③求值:解有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论