版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省保定市定州市2024届高一数学第二学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,则与().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向2.为得到函数的图象,只需将函数图象上的所有点()A.向右平移3个单位长度 B.向右平移个单位长度C.向左平移3个单位长度 D.向左平移个单位长度3.函数的部分图像如图所示,则的值为()A.1 B.4 C.6 D.74.在三棱锥中,平面,,,,,则三棱锥外接球的体积为()A. B. C. D.5.若三点共线,则()A.13 B. C.9 D.6.在中,,.若点满足,则()A. B. C. D.7.函数的图象如图所示,为了得到的图象,则只要将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度8.函数的单调减区间为A.B.C.D.9.函数的图象与函数的图象交点的个数为()A. B. C. D.10.在中,角,,所对的边分别为,,,若,且,则的面积的最大值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某中学初中部共有名老师,高中部共有名教师,其性别比例如图所示,则该校女教师的人数为__________.12.________13.直线的倾斜角为__________.14.在数列中,,,则__________.15.已知一扇形的半径为,弧长为,则该扇形的圆心角大小为______.16.已知四面体的四个顶点均在球的表面上,为球的直径,,四面体的体积最大值为____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f1当a>0时,求函数y=f2若存在m>0使关于x的方程fx=m+118.在中,内角A,B,C的对边分别为a,b,c,已知.求A;已知,的面积为的周长.19.已知直线和.(1)若,求实数的值;(2)若,求实数的值.20.如图,在△ABC中,cosC=,角B的平分线BD交AC于点D,设∠CBD=θ,其中tanθ=﹣1.(1)求sinA的值;(2)若,求AB的长.21.如图,在平面四边形中,,,,,.(1)求的长;(2)求的长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
通过计算两个向量的数量积,然后再判断两个向量能否写成的形式,这样可以选出正确答案.【题目详解】因为,,所以,而不存在实数,使成立,因此与不共线,故本题选A.【题目点拨】本题考查了两个平面向量垂直的判断,考查了平面向量共线的判断,考查了数学运算能力.2、B【解题分析】
先化简得,根据函数图像的变换即得解.【题目详解】因为,所以函数图象上的所有点向右平移个单位长度可得到函数的图象.故选:B【题目点拨】本题主要考查三角函数图像的变换,意在考查学生对该知识的理解掌握水平和分析推理能力.3、C【解题分析】
根据是零点以及的纵坐标值,求解出的坐标值,然后进行数量积计算.【题目详解】令,且是第一个零点,则;令,是轴右侧第一个周期内的点,所以,则;则,,则.选C.【题目点拨】本题考查正切型函数以及坐标形式下向量数量积的计算,难度较易.当已知,则有.4、B【解题分析】
在三棱锥中,求得,又由底面,所以,在直角中,求得,进而得到三棱锥外接球的直径,得到,利用体积公式,即可求解.【题目详解】由题意知,在三棱锥中,,,,所以,又由底面,所以,在直角中,,所以,根据球的性质,可得三棱锥外接球的直径为,即,所以球的体积为,故选B.【题目点拨】本题主要考查了与球有关的组合体中球的体积的计算,其中解答中根据组合体的结构特征和球的性质,准确求解球的半径是解答的关键,着重考查了推理与运算能力,属于中档试题.5、D【解题分析】
根据三点共线,有成立,解方程即可.【题目详解】因为三点共线,所以有成立,因此,故本题选D.【题目点拨】本题考查了斜率公式的应用,考查了三点共线的性质,考查了数学运算能力.6、A【解题分析】
试题分析:,故选A.7、D【解题分析】
先根据图象确定A的值,进而根据三角函数结果的点求出求与的值,确定函数的解析式,然后根据诱导公式将函数化为余弦函数,再平移即可得到结果.【题目详解】由题意,函数的部分图象,可得,即,所以,再根据五点法作图,可得,求得,故.函数的图象向左平移个单位,可得的图象,则只要将的图象向右平移个单位长度可得的图象,故选:D.【题目点拨】本题主要考查了三角函数的图象与性质,以及三角函数的图象变换的应用,其中解答中熟记三角函数的图象与性质,以及三角函数的图象变换是解答的关键,着重考查了推理与运算能力,属于基础题.8、A【解题分析】
根据正弦函数的单调递减区间,列出不等式求解,即可得出结果.【题目详解】的单调减区间为,,解得函数的单调减区间为.故选A.【题目点拨】本题主要考查三角函数的单调性,熟记正弦函数的单调区间即可,属于常考题型.9、D【解题分析】
通过对两函数的表达式进行化简,变成我们熟悉的函数模型,比如反比例、一次函数、指数、对数及三角函数,看图直接判断【题目详解】由,作图如下:共6个交点,所以答案选择D【题目点拨】函数图象交点个数问题与函数零点、方程根可以作相应等价,用函数零点及方程根本题不现实,所以我们更多去考虑分别作图象,直接看交点个数.10、A【解题分析】
由以及,结合二倍角的正切公式,可得,根据三角形的内角的范围可得,由余弦定理以及基本不等式可得,再根据面积公式可得答案.【题目详解】因为,且,所以,所以,则.由于为定值,由余弦定理得,即.根据基本不等式得,即,当且仅当时,等号成立.所以.故选:A【题目点拨】本题考查了二倍角的正切公式,考查了余弦定理,考查了基本不等式,考查了三角形的面积公式,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由初中部、高中部男女比例的饼图,初中部女老师占70%,高中部女老师占40%,分别算出女老师人数,再相加.【题目详解】初中部女老师占70%,高中部女老师占40%,该校女教师的人数为.【题目点拨】考查统计中读图能力,从图中提取基本信息的基本能力.12、【解题分析】
根据极限的运算法则,合理化简、运算,即可求解.【题目详解】由极限的运算,可得.故答案为:【题目点拨】本题主要考查了极限的运算法则的应用,其中解答熟记极限的运算法则,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解题分析】试题分析:由直线方程可知斜率考点:直线倾斜角与斜率14、16【解题分析】
依次代入即可求得结果.【题目详解】令,则;令,则;令,则;令,则本题正确结果:【题目点拨】本题考查根据数列的递推公式求解数列中的项,属于基础题.15、【解题分析】
利用扇形的弧长除以半径可得出该扇形圆心角的弧度数.【题目详解】由扇形的弧长、半径以及圆心角之间的关系可知,该扇形的圆心角大小为.故答案为:.【题目点拨】本题考查扇形圆心角的计算,解题时要熟悉扇形的弧长、半径以及圆心角之间的关系,考查计算能力,属于基础题.16、2【解题分析】
为球的直径,可知与均为直角三角形,求出点到直线的距离为,可知点在球上的运动轨迹为小圆.【题目详解】如图所示,四面体内接于球,为球的直径,,,,过作于,,点在以为圆心,为半径的小圆上运动,当面面时,四面体的体积达到最大,.【题目点拨】立体几何中求最值问题,核心通过直观想象,找到几何体是如何变化的?本题求解的突破口在于找到点的运动轨迹,考查学生的空间想象能力和逻辑思维能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)a<-3-2【解题分析】
(1)将问题转化为解不等式ax2-a+1x+1≥0,即ax-1x-1≥0(2)t=m+1m≥2,将问题转化为:关于x的方程ax2【题目详解】(1)由题意,fx=ax解方程ax-1x-1=0,得x1①当1a>1时,即当0<a<1时,解不等式ax-1x-1≥0,得此时,函数y=fx的定义域为②当1a=1时,即当a=1时,解不等式x-12此时,函数y=fx的定义域为③当1a<1时,即当a>1时,解不等式ax-1x-1≥0,解得此时,函数y=fx的定义域为(2)令t=m+1则关于x的方程fx=t有四个不同的实根可化为即ax2-解得a<-3-2【题目点拨】本题考查含参不等式的求解,考查函数的零点个数问题,在求解含参不等式时,找出分类讨论的基本依据,在求解二次函数的零点问题时,应结合图形找出等价条件,通过列不等式组来求解,考查分类讨论数学思想以及转化与化归数学思想,属于中等题。18、(1);(2)【解题分析】
(1)在中,由正弦定理及题设条件,化简得,即可求解.(2)由题意,根据题设条件,列出方程,求的,得到,即可求解周长.【题目详解】(1)在中,由正弦定理及已知得,化简得,,所以.(2)因为,所以,又的面积为,则,则,所以的周长为.【题目点拨】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.19、(1);(2).【解题分析】
(1)借助两直线垂直的充要条件建立方程求解;(2)借助两直线平行充要条件建立方程求解.【题目详解】(1)若,则.(2)若,则或2.经检验,时,与重合,时,符合条件,∴.【点晴】解析几何是运用代数的方法和知识解决几何问题一门学科,是数形结合的典范,也是高中数学的重要内容和高考的热点内容.解答本题时充分运用和借助题设条件中的垂直和平行条件,建立了含参数的直线的方程,然后再运用已知条件进行分析求解,从而将问题进行转化和化归,进而使问题获解.如本题的第一问中求参数的值时,是直接运用垂直的充要条件建立方程,这是方程思想的运用;再如第二问中求参数的值时也是运用了两直线平行的条件,但要注意的是这个条件不是两直线平行的充要条件,所以一定代回进行检验,这也是学生经常会出现错误的地方.20、(1)(2)【解题分析】
(1)根据二倍角公式及同角基本关系式,求出cos∠ABC,进而可求出sinA;(2)根据正弦定理求出AC,BC的关系,利用向量的数量积公式求出AC,可得BC,正弦定理可得答案.【题目详解】(1)由∠CBD=θ,且tanθ1,所以θ∈(0,),所以cos∠ABC,则sin∠ABC,由cosC,得:sinC,sinA=sin[π﹣(∠ABC+∠C)]=sin(∠ABC+∠C).(2)由正弦定理,得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育公司聘用合同范例
- 天津滨海职业学院《基础化学实验Ⅰ》2023-2024学年第一学期期末试卷
- 施工合同范例 投料试车
- 电站工程合同范例
- 幼儿游泳培训合同范例
- 打板合同范例
- 电子商务交易合同范例
- 厦门保结合同范例
- 劳务公司分包合同范例
- 梅赛德斯租赁合同范例
- 2024版首诊负责制度课件
- 新西兰饮食文化英文介绍课件
- 改沟改渠施工方案
- DB11T 2081-2023 道路工程混凝土结构表层渗透防护技术规范
- 贵州省贵阳市2023-2024学年高一上学期期末考试 物理 含解析
- 2024年问政山东拆迁协议书模板
- 我的教育故事
- 山东省青岛市2023-2024学年高一年级上册1月期末选科测试 生物 含解析
- 电工技术(第3版)表格式教案教学详案设计
- 中学教职工安全知识测试练习试题
- 2024年青岛市技师学院招考聘用48人高频500题难、易错点模拟试题附带答案详解
评论
0/150
提交评论