2024届福州七中高一数学第二学期期末质量跟踪监视模拟试题含解析_第1页
2024届福州七中高一数学第二学期期末质量跟踪监视模拟试题含解析_第2页
2024届福州七中高一数学第二学期期末质量跟踪监视模拟试题含解析_第3页
2024届福州七中高一数学第二学期期末质量跟踪监视模拟试题含解析_第4页
2024届福州七中高一数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福州七中高一数学第二学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.方程的解集为()A.B.C.D.2.若直线过两点,,则的斜率为()A. B. C.2 D.3.如图,在直三棱柱中,,,,则异面直线与所成角的余弦值是()A. B. C. D.4.圆与圆的位置关系是()A.相离 B.相交 C.相切 D.内含5.如图为A、B两名运动员五次比赛成绩的茎叶图,则他们的平均成绩和方差的关系是()A., B.,C., D.,6.已知点均在球上,,若三棱锥体积的最大值为,则球的体积为A. B. C.32 D.7.函数f(x)=log3(2﹣x)的定义域是()A.[2,+∞) B.(2,+∞) C.(﹣∞,2) D.(﹣∞,2]8.在中,角所对的边分别为.若,,,则等于()A. B. C. D.9.过点作抛物线的两条切线,切点为,则的面积为()A. B. C. D.10.一个三角形的三边长成等比数列,公比为,则函数的值域为()A.(,+∞) B.[,+∞) C.(,-1) D.[,-1)二、填空题:本大题共6小题,每小题5分,共30分。11.设在的内部,且,的面积与的面积之比为______.12.已知圆的圆心在直线,与y轴相切,且被直线截得的弦长为,则圆C的标准方程为________.13.在等差数列中,若,且它的前n项和有最大值,则当取得最小正值时,n的值为_______.14.等比数列前n项和为,若,则______.15.若函数的反函数的图象过点,则________.16.已知,若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知圆的方程为,过点的直线与圆交于两点,.(1)若,求直线的方程;(2)若直线与轴交于点,设,,,R,求的值.18.已知圆的圆心在轴的正半轴上,半径为2,且被直线截得的弦长为.(1)求圆的方程;(2)设是直线上的动点,过点作圆的切线,切点为,证明:经过,,三点的圆必过定点,并求出所有定点的坐标.19.(1)计算(2)已知,求的值20.如图,在直四棱柱中,底面为菱形,为中点.(1)求证:平面;(2)求证:.21.在等差数列中,(Ⅰ)求通项;(Ⅱ)求此数列前30项的绝对值的和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

利用反三角函数的定义以及正切函数的周期为,即可得到原方程的解.【题目详解】由,根据正切函数图像以及周期可知:,故选:C【题目点拨】本题考查了反三角函数的定义以及正切函数的性质,需熟记正切函数的图像与性质,属于基础题.2、C【解题分析】

直接运用斜率计算公式求解.【题目详解】因为直线过两点,,所以直线的斜率,故本题选C.【题目点拨】本题考查了斜率的计算公式,考查了数学运算能力、识记公式的能力.3、D【解题分析】连结,∵,

∴是异面直线与所成角(或所成角的补角),

∵在直三棱柱中,,,,

∴,,,,

∴,

∴异面直线与所成角的余弦值为,故选D.4、B【解题分析】

计算圆心距,判断与半径和差的关系得到位置关系.【题目详解】圆心距相交故答案选B【题目点拨】本题考查了两圆的位置关系,判断圆心距与半径和差的关系是解题的关键.5、D【解题分析】

根据题中数据,直接计算出平均值与方差,即可得出结果.【题目详解】由题中数据可得,,,所以;又,,所以.故选D【题目点拨】本题主要考查平均数与方差的比较,熟记公式即可,属于基础题型.6、A【解题分析】

设是的外心,则三棱锥体积最大时,平面,球心在上.由此可计算球半径.【题目详解】如图,设是的外心,则三棱锥体积最大时,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,设球半径为,则由得,解得,∴球体积为.故选A.【题目点拨】本题考查球的体积,关键是确定球心位置求出球的半径.7、C【解题分析】试题分析:利用对数函数的性质求解.解:函数f(x)=log3(1﹣x)的定义域满足:1﹣x>0,解得x<1.∴函数f(x)=log3(1﹣x)的定义域是(﹣∞,1).故选C.考点:对数函数的定义域.8、B【解题分析】

利用正弦定理可求.【题目详解】由正弦定理得.故选B.【题目点拨】本题考查正弦定理的应用,属于容易题.9、B【解题分析】设抛物线过点的切线方程为,即,将点代入可得,同理都满足方程,即为直线的方程为,与抛物线联立,可得,点到直线的距离,则的面积为,故选B.【方法点晴】本题主要考查利用导数求曲线切线方程以及弦长公式与点到直线距离公式,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.10、D【解题分析】

由题意先设出三边为则由三边关系:两短边和大于第三边,分公比大于与公式在小于两类解出公比的取值范围,此两者的并集是函数的定义域,再由二次函数的性质求出它的值域,选出正确选项.【题目详解】解:设三边:则由三边关系:两短边和大于第三边,即

(1)当时,,即,解得;

(2)当时,为最大边,,即,解得,

综合(1)(2)得:,

又的对称轴是,故函数在上是减函数,在上是增函数,

由于时,与时,,

所以函数的值域为,故选:D.【题目点拨】本题考查等比数列的性质及二次函数的值域的求法,解答本题关键是熟练掌握等比数列的性质,能利用它建立不等式解出公比的取值范围得出函数的定义域,熟练掌握二次函数的性质也很重要,由此类题可以看出,扎实的双基,娴熟的基础知识与公式的记忆是解题的知识保障.二、填空题:本大题共6小题,每小题5分,共30分。11、1:3【解题分析】

记,,可得:为的重心,利用比例关系可得:,,,结合:即可得解.【题目详解】记,则则为的重心,如下图由三角形面积公式可得:,,又为的重心,所以,所以所以【题目点拨】本题主要考查了三角形重心的向量结论,还考查了转化能力及三角形面积比例计算,属于难题.12、或【解题分析】

由圆心在直线x﹣3y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,距离d,由圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【题目详解】设圆心为(3t,t),半径为r=|3t|,则圆心到直线y=x的距离d|t|,而()2=r2﹣d2,9t2﹣2t2=7,t=±1,∴圆心是(3,1)或(-3,-1)故答案为或.【题目点拨】本题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.13、.【解题分析】试题分析:因为等差数列前项和有最大值,所以公差为负,所以由得,所以,=,所以当时,取到最小正值.考点:1、等差数列性质;2、等差数列的前项和公式.【方法点睛】求等差数列前项和的最值常用的方法有:(1)先求,再利用或求出其正负转折项,最后利用单调性确定最值;(2)利用性质求出其正负转折项,便可求得前项和的最值;(3)利用等差数列的前项和(为常数)为二次函数,根据二次函数的性质求最值.14、【解题分析】

根据等比数列的性质得到成等比,从而列出关系式,又,接着用表示,代入到关系式中,可求出的值.【题目详解】因为等比数列的前n项和为,则成等比,且,所以,又因为,即,所以,整理得.故答案为:.【题目点拨】本题考查学生灵活运用等比数列的性质化简求值,是一道基础题。解决本题的关键是根据等比数列的性质得到成等比.15、【解题分析】

由反函数的性质可得的图象过,将代入,即可得结果.【题目详解】的反函数的图象过点,的图象过,故答案为.【题目点拨】本题主要考查反函数的基本性质,意在考查对基础知识掌握的熟练程度,属于基础题.16、【解题分析】

由条件利用正切函数的单调性直接求出的值.【题目详解】解:函数在上单调递增,且,若,则,故答案为:.【题目点拨】本题主要考查正切函数的单调性,根据三角函数的值求角,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)设斜率为,则直线的方程为,利用圆的弦长公式,列出方程求得的值,即可得到直线的方程;(2)当直线的斜率不存在时,根据向量的运算,求得,当直线的斜率存在时,设直线的方程为,联立方程组,利用根与系数的关系,以及向量的运算,求得,得到答案.【题目详解】(1)当直线的斜率不存在时,,不符合题意;当直线的斜率存在时,设斜率为,则直线的方程为,所以圆心到直线的距离,因为,所以,解得,所以直线的方程为..(2)当直线的斜率不存在时,不妨设,,,因为,,所以,,所以,,所以.当直线的斜率存在时,设斜率为,则直线的方程为:,因为直线与轴交于点,所以.直线与圆交于点,,设,,由得,,所以,;因为,,所以,,所以,,所以.综上,.【题目点拨】本题主要考查了直线与圆的位置关系的应用,以及向量的坐标运算,其中解答中熟记圆的弦长公式,以及联立方程组,合理利用根与系数的关系和向量的运算是解答的关键,着重考查了推理与运算能力,属于中档试题.18、(1)圆:.(2)证明见解析;,.【解题分析】

(1)设出圆心坐标,利用点到直线距离公式以及圆的弦长列方程,解方程求得圆心坐标,进而求得圆的方程.(2)设出点坐标,根据过圆的切线的几何性质,得到过,,三点的圆是以为直径的圆.设出圆上任意一点的坐标,利用,结合向量数量积的坐标运算进行化简,得到该圆对应的方程,根据方程过的定点与无关列方程组,解方程组求得该圆所过定点.【题目详解】解:(1)设圆心,则圆心到直线的距离.因为圆被直线截得的弦长为∴.解得或(舍),∴圆:.(2)已知,设,∵为切线,∴,∴过,,三点的圆是以为直径的圆.设圆上任一点为,则.∵,,∴即.若过定点,即定点与无关令解得或,所以定点为,.【题目点拨】本小题主要考查圆的几何性质,考查圆的弦长有关计算,考查曲线过定点问题的求解策略,考查向量数量积的坐标运算,属于中档题.19、(1)1+;(2).【解题分析】

(1)利用对数的运算法则计算得解;(2)先化简已知得,再把它代入化简的式子即得解.【题目详解】(1)原式=1+;(2)由题得,所以.【题目点拨】本题主要考查对数的运算,考查诱导公式化简求值和同角的三角函数关系,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1)见解析;(2)见解析【解题分析】

(1)连接与与交于点,在利用中位线证明平行.(2)首先证明平面,由于平面,证明得到结论.【题目详解】证明:(1)连接与交于点,连接因为底面为菱形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论