




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市宝坻区数学高一下期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图象如图所示,则的单调递减区间为A.B.C.D.2.将函数的图象向左平移个单位得到函数的图象,则的值为()A. B. C. D.3.设向量,满足,,则()A.1 B.2 C.3 D.54.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是()A.2 B.0 C.-2 D.45.高一数学兴趣小组共有5人,编号为.若从中任选3人参加数学竞赛,则选出的参赛选手的编号相连的概率为()A. B. C. D.6.在中,角,,的对边分别是,,,若,则()A. B. C. D.7.已知幂函数过点,令,,记数列的前项和为,则时,的值是()A.10 B.120 C.130 D.1408.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是()A.12 B.34 C.19.在中,,,,则()A. B. C. D.10.如图,网格纸上正方形小格边长为,图中粗线画的是某几何体的三视图,则该几何体的表面积等于()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.空间两点,间的距离为_____.12.若各项均为正数的等比数列,,则它的前项和为______.13.已知直线过点,且在两坐标轴上的截距相等,则此直线的方程为_____________.14.过点直线与轴的正半轴,轴的正半轴分别交于、两点,为坐标原点,当最小时,直线的一般方程为______.15.正六棱柱底面边长为10,高为15,则这个正六棱柱的体积是_____.16.若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知平面平行于三棱锥的底面,等边所在的平面与底面垂直,且,设(1)求证:且;(2)求二面角的余弦值.18.已知正项等比数列中,,,等差数列中,,且.(1)求数列的通项公式;(2)求数列的前项和.19.在中,内角A,B,C所对的边分别为a,b,c;已知.(1)求角B的大小;(2)若外接圆的半径为2,求面积的最大值.20.己知向量,,设函数,且的图象过点和点.(1)当时,求函数的最大值和最小值及相应的的值;(2)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数的图象,若在有两个不同的解,求实数的取值范围.21.已知直线与直线的交点为P,点Q是圆上的动点.(1)求点P的坐标;(2)求直线的斜率的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
根据图象可得最小正周期,求得;利用零点和的符号可确定的取值;令,解不等式即可求得单调递减区间.【题目详解】由图象可知:又,,由图象可知的一个可能的取值为令,,解得:,即的单调递减区间为:,本题正确选项:【题目点拨】本题考查利用图象求解余弦型函数的解析式、余弦型函数单调区间的求解问题;关键是能够灵活应用整体对应的方式来求解解析式和单调区间,属于常考题型.2、A【解题分析】,向左平移个单位得到函数=,故3、A【解题分析】
将等式进行平方,相加即可得到结论.【题目详解】∵||,||,∴分别平方得2•10,2•6,两式相减得4•10﹣6=4,即•1,故选A.【题目点拨】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4、C【解题分析】
将转化为,利用向量数量积运算化简,然后利用基本不等式求得表达式的最小值.【题目详解】画出图像如下图所示,,等号在,即为的中点时成立.故选C.【题目点拨】本小题主要考查平面向量加法运算,考查平面向量的数量积运算,考查利用基本不等式求最值,属于中档题.5、A【解题分析】
先考虑从个人中选取个人参加数学竞赛的基本事件总数,再分析选出的参赛选手的编号相连的事件数,根据古典概型的概率计算得到结果.【题目详解】因为从个人中选取个人参加数学竞赛的基本事件有:,共种,又因为选出的参赛选手的编号相连的事件有:,共种,所以目标事件的概率为.故选:A.【题目点拨】本题考查古典概型的简单应用,难度较易.求解古典概型问题的常规思路:先计算出基本事件的总数,然后计算出目标事件的个数,目标事件的个数比上基本事件的总数即可计算出对应的概率.6、D【解题分析】
由题意,再由余弦定理可求出,即可求出答案.【题目详解】由题意,,设,由余弦定理可得:,则.故选D.【题目点拨】本题考查了正、余弦定理的应用,考查了计算能力,属于中档题.7、B【解题分析】
根据幂函数所过点求得幂函数解析式,由此求得的表达式,利用裂项求和法求得的表达式,解方程求得的值.【题目详解】设幂函数为,将代入得,所以.所以,所以,故,由解得,故选B.【题目点拨】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.8、D【解题分析】
求出阴影部分的面积,然后与圆面积作比值即得.【题目详解】圆被8等分,其中阴影部分有3分,因此所求概率为P=3故选D.【题目点拨】本题考查几何概型,属于基础题.9、D【解题分析】
直接用正弦定理直接求解边.【题目详解】在中,,,由余弦定理有:,即故选:D【题目点拨】本题考查利用正弦定理解三角形,属于基础题.10、C【解题分析】
由三视图可知该几何体是一个四棱锥,作出图形即可求出表面积。【题目详解】该几何体为四棱锥,如图..选C.【题目点拨】本题考查了三视图,考查了四棱锥的表面积,考查了学生的空间想象能力与计算能力,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据空间中两点间的距离公式即可得到答案【题目详解】由空间中两点间的距离公式可得;;故距离为3【题目点拨】本题考查空间中两点间的距离公式,属于基础题。12、【解题分析】
利用等比数列的通项公式求出公比,由此能求出它的前项和.【题目详解】设各项均为正数的等比数列的公比为,由,得,且,解得,它的前项和为.故答案:.【题目点拨】本题考查等比数列的前项和的求法,考查等比数列的性质等基础知识,考查运算求解能力,属于基础题.13、或【解题分析】
分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为,把已知点坐标代入即可求出的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为,把已知点的坐标代入即可求出的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【题目详解】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为,把代入所设的方程得:,则所求直线的方程为即;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为,把代入所求的方程得:,则所求直线的方程为即.综上,所求直线的方程为:或.故答案为:或【题目点拨】此题考查学生会根据条件设出直线的截距式方程和点斜式方程,考查了分类讨论的数学思想,属于基础题.14、【解题分析】
设直线的截距式方程为,利用该直线过可得,再利用基本不等式可求何时即取最小值,从而得到相应的直线方程.【题目详解】设直线的截距式方程为,其中且.因为直线过,故.所以,由基本不等式可知,当且仅当时等号成立,故当取最小值时,直线方程为:.填.【题目点拨】直线方程有五种形式,常用的形式有点斜式、斜截式、截距式、一般式,垂直于的轴的直线没有点斜式、斜截式和截距式,垂直于轴的直线没有截距式,注意根据题设所给的条件选择合适的方程的形式,特别地,如果考虑的问题是与直线、坐标轴围成的直角三角形有关的问题,可考虑利用截距式.15、【解题分析】
正六棱柱是底面为正六边形的直棱柱,利用计算可得结果.【题目详解】因为正六棱柱底面边长为10,所以其面积,所以体积.【题目点拨】本题考查正六棱柱的概念及其体积的计算,考查基本运算能力.16、【解题分析】
直接利用倍角公式展开,即可得答案.【题目详解】由,得,即,.故答案为:.【题目点拨】本题考查三角函数的化简求值,考查倍角公式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(1)【解题分析】
(1)由平面∥平面,根据面面平行的性质定理,可得,,再由,得到.由平面平面,根据面面垂直的性质定理可得平面,从而有.(2)过作于,根据题意有平面,过D作于H,连结AH,由三垂线定理知,所以是二面角的平面角.然后在在中,在中,利用三角形相似求得再在求解.【题目详解】(1)证明:∵平面∥平面,∴,,∵,,又∵平面平面,平面平面,∴平面,平面,∴.(2)过作于,∵为正三角形,∴D为中点,∵平面∴又∵,∴平面.在等边三角形中,,过D作于H,连结AH,由三垂线定理知,∴是二面角的平面角.在中,~,,∴,,∴.【题目点拨】本题主要考查几何体中面面平行的性质定理和面面垂直的性质定理及二角面角问题,还考查了空间想象,抽象概括,推理论证的能力,属于中档题.18、(1);(2).【解题分析】
(1)设正项等比数列的公比为q(q>0),由已知列式求得公比,则等比数列的通项公式可求;(2)由,求解等差数列的公差,则数列的前n项和可求.【题目详解】(1)设正项等比数列的公比为q(q>0),由,得,则q=3.;(2)设等差数列的公差为d,由,得,∴d=3.∴数列的前n项和【题目点拨】本题主要考查等差数列的通项公式与求和公式,考查了等比数列的通项公式,意在考查综合应用所学知识解答问题的能力,属于中档题.19、(1)(2)【解题分析】
(1)利用正弦定理与余弦的差角公式运算求解即可.(2)根据正弦定理可得,再利用余弦定理与基本不等式求得再代入面积求最大值即可.【题目详解】解:(1)在中,由正弦定理得,得,又∴.即,∴,又,∴.(2)结合(1)由正弦定理可知,由余弦定理可知,所以当且仅当时等号成立,所以,所以面积的最大值为.【题目点拨】本题主要考查了正余弦定理与三角形面积公式在解三角形中的运用.同时考查了根据基本不等式求解三角形面积的最值问题.属于中档题.20、(1)最大值为2,此时;最小值为-1,此时.(2)【解题分析】
(1)根据向量数量积坐标公式,列出函数,再根据函数图像过定点,求解函数解析式,当时,解出的范围,根据三角函数性质,可求最值;(2)根据三角函数平移伸缩变换,写出解析式,画出在上的图象,根据图像即可求解参数取值范围.【题目详解】解:(1)由题意知.根据的图象过点和,得到,解得,.当时,,,最大值为2,此时,最小值为-1,此时.(2)将函数的图象向右平移一个单位得,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得令,,如图当时,在有两个不同的解∴,即.【题目点拨】本题考查(1)三角函数最值问题(2)三角函数的平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省宜宾市六中2025年高三(最后冲刺)化学试卷含解析
- 微课培训讲座
- 2025年生活垃圾焚烧发电项目建议书
- 陕西省安康市高新中学2024-2025学年高二下学期第一次月考(3月)英语试卷(含答案无听力原文及音频)
- 2025年山东省济南市市中区中考物理一模试卷(无答案)
- 山东省东营市垦利区第一中学2025届高考全国统考预测密卷化学试卷含解析
- 2025届湖南省湘潭市湘机中学高考化学五模试卷含解析
- 2025届山东省枣庄市现代实验学校高三3月份第一次模拟考试化学试卷含解析
- 2025年数显仪表项目发展计划
- 中考数学高频考点专项练习:专题14 考点32 正方形 (3)及答案
- 2024分娩镇痛ppt课件完整版
- 发展心理学第四节婴儿的气质情绪与社会性发展
- 麦凯66表格(完全版)
- 岩石饱和与天然抗压强度及软化系数试验作业指导书
- 2021年山东省青岛市中考地理试卷(附答案)
- 处方审核和合理用药70张课件
- 写字楼保洁服务投标方案
- 24所浙江高校三位一体线上面试真题汇总
- 良种基地建设-母树林(林木种苗生产技术)
- 高填方路基施工质量控制培训二
- 道路危险货物运输行业安全生产管理培训教材(PPT 58张)
评论
0/150
提交评论