2024届吉林省通化市梅河口市博文学校数学高一第二学期期末考试模拟试题含解析_第1页
2024届吉林省通化市梅河口市博文学校数学高一第二学期期末考试模拟试题含解析_第2页
2024届吉林省通化市梅河口市博文学校数学高一第二学期期末考试模拟试题含解析_第3页
2024届吉林省通化市梅河口市博文学校数学高一第二学期期末考试模拟试题含解析_第4页
2024届吉林省通化市梅河口市博文学校数学高一第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省通化市梅河口市博文学校数学高一第二学期期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.以点为圆心,且经过点的圆的方程为()A. B.C. D.2.式子的值为()A. B.0 C.1 D.3.下列函数中是偶函数且最小正周期为的是()A. B.C. D.4.定义在R上的函数fx既是偶函数又是周期函数,若fx的最小正周期是π,且当x∈0,π2A.-12 B.32 C.5.如果直线与平面不垂直,那么在平面内()A.不存在与垂直的直线 B.存在一条与垂直的直线C.存在无数条与垂直的直线 D.任意一条都与垂直6.已知函数的最大值为,最小值为,则的值为()A. B. C. D.7.如图所示,从气球上测得正前方的河流的两岸,的俯角分别为,,此时气球的高度是60m,则河流的宽度等于()A.m B.m C.m D.m8.已知为锐角,,则()A. B. C. D.9.在中,内角,,的对边分别为,,,若,,,则的最小角为()A. B. C. D.10.如图,位于处的海面观测站获悉,在其正东方向相距40海里的处有一艘渔船遇险,并在原地等待营救.在处南偏西且相距20海里的处有一救援船,其速度为海里小时,则该船到求助处的时间为()分钟.A.24 B.36 C.48 D.60二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,那么的值是________.12.cos213.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一个周期的图象,则f(1)=__________.14.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.15.设,过定点A的动直线和过定点B的动直线交于点,则的最大值是.16.已知角α的终边与单位圆交于点.则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)计算及、;(2)设,,,若,试求此时和满足的函数关系式,并求的最小值.18.在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支.求(1)恰有1支一等品的概率;(2)恰有两支一等品的概率;(3)没有三等品的概率.19.已知的角、、所对的边分别是、、,设向量,,.(1)若,求证:为等腰三角形;(2)若,边长,角,求的面积.20.已知点,,点为曲线上任意一点且满足(1)求曲线的方程;(2)设曲线与轴交于两点,点是曲线上异于的任意一点,直线分别交直线:于点,试问轴上是否存在一个定点,使得?若存在,求出点的坐标;若不存在,请说明理由.21.已知等比数列的公比,且,.(1)求数列的通项公式;(2)设,是数列的前项和,对任意正整数不等式恒成立,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

通过圆心设圆的标准方程,代入点即可.【题目详解】设圆的方程为:,又经过点,所以,即,所以圆的方程:.故选B【题目点拨】此题考查圆的标准方程,记住标准方程的一般设法,代入数据即可求解,属于简单题目.2、D【解题分析】

利用两角和的正弦公式可得原式为cos(),再由特殊角的三角函数值可得结果.【题目详解】cos()=coscos,故选D.【题目点拨】本题考查两角和的余弦公式,熟练掌握两角和与差的余弦公式以及特殊角的三角函数值是解题的关键,属于基础题.3、A【解题分析】

本题首先可将四个选项都转化为的形式,然后对四个选项的奇偶性以及周期性依次进行判断,即可得出结果.【题目详解】中,函数,是偶函数,周期为;中,函数是奇函数,周期;中,函数,是非奇非偶函数,周期;中,函数是偶函数,周期.综上所述,故选A.【题目点拨】本题考查对三角函数的奇偶性以及周期性的判断,考查三角恒等变换,偶函数满足,对于函数,其最小正周期为,考查化归与转化思想,是中档题.4、B【解题分析】分析:要求f(5π3),则必须用f(x)=详解:∵f(x)的最小正周期是π∴f∵f(x)是偶函数∴f-π∵当x∈[0,π2则f故选B点睛:本题是一道关于正弦函数的题目,掌握正弦函数的周期性是解题的关键,考查了函数的周期性和函数单调性的性质.5、C【解题分析】

因为直线l与平面不垂直,必然会有一条直线与其垂直,而所有与该直线平行直线也与其垂直,因此选C6、B【解题分析】由解得为函数的定义域.令,消去得,图像为椭圆的一部分,如下图所示.,即直线,由图可知,截距在点处取得最小值,在与椭圆相切的点处取得最大值.而,故最小值为.联立,消去得,其判别式为零,即,解得(负根舍去),即,故.【题目点拨】本题主要考查含有两个根号的函数怎样求最大值和最小值.先用换元法,将原函数改写成为一次函数的形式.然后利用和的关系,得到的可行域,本题中可行域为椭圆在第一象限的部分.然后利用,用截距的最大值和最小值来求函数的最大值和最小值.7、A【解题分析】

在直角三角形中,利用锐角三角函数求出的长,在直角三角形中,利用锐角三角函数求出的长,最后利用进行求解即可.【题目详解】在直角三角形中,.在直角三角形中,.所以有.故选:A【题目点拨】本题考查了锐角三角函数的应用,考查了数学运算能力.8、A【解题分析】

先将展开并化简,再根据二倍角公式,计算可得。【题目详解】由题得,,整理得,又为锐角,则,,解得.故选:A【题目点拨】本题考查两角和差公式以及二倍角公式,是基础题。9、A【解题分析】

由三角形大边对大角可知所求角为角,利用余弦定理可求得,进而得到结果.【题目详解】的最小角为角,则故选:【题目点拨】本题考查利用余弦定理解三角形的问题,关键是明确三角形中大边对大角的特点,进而根据余弦定理求得所求角的余弦值.10、A【解题分析】

利用余弦定理求出的长度,然后根据速度、时间、路程之间的关系求出时间即可.【题目详解】由题意可知:,运用余弦定理可知:该船到求助处的时间,故本题选A.【题目点拨】本题考查了余弦定理的应用,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

首先根据题中条件求出角,然后代入即可.【题目详解】由题知,,所以,故.故答案为:.【题目点拨】本题考查了特殊角的三角函数值,属于基础题.12、3【解题分析】由二倍角公式可得:cos213、2【解题分析】

由三角函数图象,利用三角函数的性质,求得函数的解析式,即可求解的值,得到答案.【题目详解】由三角函数图象,可得,由,得,于是,又,即,解得,所以,则.【题目点拨】本题主要考查了由三角函数的部分图象求解函数的解析式及其应用,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.14、3【解题分析】

根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案.【题目详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取的人数为.【题目点拨】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.15、5【解题分析】试题分析:易得.设,则消去得:,所以点P在以AB为直径的圆上,,所以,.法二、因为两直线的斜率互为负倒数,所以,点P的轨迹是以AB为直径的圆.以下同法一.【考点定位】1、直线与圆;2、重要不等式.16、【解题分析】

直接利用三角函数的坐标定义求解.【题目详解】由题得.故答案为【题目点拨】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2),.【解题分析】

(1)根据数量积和模的坐标运算计算;(2)由可得出,然后由二次函数性质求得最小值.【题目详解】(1)由题意及,同理,.(2)∵,∴,∴,即,又,∴时,.【题目点拨】本题考查向量的数量积与模的坐标运算,考查向量垂直与数量积的关系.掌握数量积的性质是解题基础.其中.18、(1);(2);(3).【解题分析】

(1)恰有一支一等品,从3支一等品中任取一支,从二、三等品种任取两支利用分布乘法原理计算后除以基本事件总数;(2)恰有两枝一等品,从3支一等品中任取两支,从二、三等品种任取一支利用分布乘法原理计算后除以基本事件总数;(3)从5支非三等品中任取三支除以基本事件总数.【题目详解】(1)恰有一枝一等品的概率;(2)恰有两枝一等品的概率;(3)没有三等品的概率.【题目点拨】本题考查古典概型及其概率计算公式,考查逻辑思维能力和运算能力,属于常考题.19、(1)见解析(2)【解题分析】

⑴因为,所以,即,其中是的外接圆半径,所以,所以为等腰三角形.⑵因为,所以.由余弦定理可知,,即解方程得:(舍去)所以.20、(1);(2)存在点使得成立.【解题分析】

(1)设P(x,y),由|PA|=2|PB|,得=2,由此能求出曲线的方程.(2)由题意得M(0,1),N(0,-1),设点R(x0,y0),(x0≠0),由点R在曲线上,得=1,直线RM的方程,从而直线RM与直线y=3的交点为,直线RN的方程为,从而直线RN与直线y=3的交点为,假设存在点S(0,m),使得成立,则,由此能求出存在点S,使得成立,且S点的坐标为.【题目详解】(1)设,由,得:,整理得.所以曲线的方程为.(2)由题意得,,.设点,由点在曲线上,所以.直线的方程为,所以直线与直线的交点为.直线的方程为所以直线与直线的交点为.假设存在点,使得成立,则,.即,整理得.因为,所以,解得.所以存在点使得成立,且点的坐标为.【题目点拨】本题考查曲线方程的求法,考查是否存在满足向量积为0的点的判断与求法,考查圆、直线方程、向量的数量积公式等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.21、(1);(2)【解题分析】

(1)由,,根据等比数列的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论