




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京十一学校数学高一第二学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系中,已知点,点,直线:.如果对任意的点到直线的距离均为定值,则点关于直线的对称点的坐标为()A. B. C. D.2.已知为等差数列,,则的值为()A.3 B.2 C. D.13.一个学校高一、高二、高三的学生人数之比为2:3:5,若用分层抽样的方法抽取容量为200的样本,则应从高三学生中抽取的人数为:A.100 B.80 C.60 D.404.已知是单位向量,.若向量满足()A. B.C. D.5.一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积是()A.10 B.20 C.30 D.406.当点到直线的距离最大时,m的值为()A.3 B.0 C. D.17.若,,则的终边所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限8.已知函数与的图象上存在关于轴对称的点,则实数的取值范围是().A. B. C. D.9.在正方体中,,分别为棱,的中点,则异面直线与所成的角为A. B. C. D.10.已知向量,,若,则锐角α为()A.45° B.60° C.75° D.30°二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,与的夹角为钝角,则的取值范围是_____;12.在中,分别是角的对边,,且的周长为5,面积,则=______13.函数的最大值为______.14.已知数列,其前项和为,若,则在,,…,中,满足的的个数为______.15.一个扇形的半径是,弧长是,则圆心角的弧度数为________.16.已知等差数列中,,,则该等差数列的公差的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为数列的前n项和,且.(1)求数列的通项公式;(2)若,求数列的前n项和.18.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制.各等级划分标准见下表.规定:三级为合格等级,D为不合格等级.为了解该校高一年级学生身体素质情况,从中抽取了名学生的原始成绩作为样本进行统计.按照的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.(I)求和频率分布直方图中的的值,并估计该校高一年级学生成绩是合格等级的概率;(II)在选取的样本中,从两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是等级的概率.19.已知函数.(1)当,时,求不等式的解集;(2)若,,的最小值为2,求的最小值.20.已知向量,,.(1)求函数的解析式及在区间上的值域;(2)求满足不等式的x的集合.21.在中,,点D在边AB上,,且.(1)若的面积为,求CD;(2)设,若,求证:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
利用点到直线的距离公式表示出,由对任意的点到直线的距离均为定值,从而可得,求得直线的方程,再利用点关于直线对称的性质即可得到对称点的坐标。【题目详解】由点到直线的距离公式可得:点到直线的距离由于对任意的点到直线的距离均为定值,所以,即,所以直线的方程为:设点关于直线的对称点的坐标为故,解得:,所以设点关于直线的对称点的坐标为故答案选B【题目点拨】本题主要考查点关于直线对称的对称点的求法,涉及点到直线的距离,两直线垂直斜率的关系,中点公式等知识点,考查学生基本的计算能力,属于中档题。2、D【解题分析】
根据等差数列下标和性质,即可求解.【题目详解】因为为等差数列,故解得.故选:D.【题目点拨】本题考查等差数列下标和性质,属基础题.3、A【解题分析】
根据分层抽样的方法,得到高三学生抽取的人数为,即可求解,得到答案.【题目详解】由题意,学校高一、高二、高三的学生人数之比为2:3:5,采用分层抽样的方法抽取容量为200的样本,所以高三学生抽取的人数为人,故选A.【题目点拨】本题主要考查了分层抽样的应用,其中解答中熟记分层抽样的方法是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解题分析】
因为,,做出图形可知,当且仅当与方向相反且时,取到最大值;最大值为;当且仅当与方向相同且时,取到最小值;最小值为.5、B【解题分析】分析:要求圆柱的轴截面的面积,需先知道圆柱的轴截面是什么图形,圆柱的轴截面是矩形,由题意知该矩形的长、宽分别为,根据矩形面积公式可得结果.详解:因为圆柱的轴截面是矩形,由题意知该矩形的长是母线长,宽为底面圆的直径,所以轴截面的面积为,故选B.点睛:本题主要考查圆柱的性质以及圆柱轴截面的面积,属于简单题.6、C【解题分析】
求得直线所过的定点,当和直线垂直时,距离取得最大值,根据斜率乘积等于列方程,由此求得的值.【题目详解】直线可化为,故直线过定点,当和直线垂直时,距离取得最大值,故,故选C.【题目点拨】本小题主要考查含有参数的直线过定点的问题,考查点到直线距离的最值问题,属于基础题.7、B【解题分析】由一全正二正弦三正切四余弦可得的终边所在的象限为第二象限,故选B.考点:三角函数8、A【解题分析】若函数f(x)=a﹣x2(1≤x≤2)与g(x)=2x+1的图象上存在关于x轴对称的点,则方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的图象是开口朝上,且以直线x=1为对称轴的抛物线,故当x=1时,g(x)取最小值﹣2,当x=2时,函数取最大值﹣1,故a∈[﹣2,﹣1],故选:A.点睛:图像上存在关于轴对称的点,即方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,转化为方程有解求参的问题,变量分离,画出函数图像,使得函数图像和常函数图像有交点即可;这是解决方程有解,图像有交点,函数有零点的常见方法。9、A【解题分析】
如图做辅助线,正方体中,且,P,M为和中点,,则即为所求角,设边长即可求得.【题目详解】如图,取的中点,连接,,.因为为棱的中点,为的中点,所以,所以,则是异面直线与所成角的平面角.设,在中,,,则,即.【题目点拨】本题考查异面直线所成的角,解题关键在于构造包含异面直线所成角的三角形.10、D【解题分析】
根据向量的平行的坐标表示,列出等式,即可求出.【题目详解】因为,所以,又为锐角,因此,即,故选D.【题目点拨】本题主要考查向量平行的坐标表示.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
与的夹角为钝角,即数量积小于0.【题目详解】因为与的夹角为钝角,所以与的数量积小于0且不平行.且所以【题目点拨】本题考查两向量的夹角为钝角的坐标表示,一定注意数量积小于0包括平角.12、【解题分析】
令正弦定理化简已知等式,得到,代入题设,求得的长,利用三角形的面积公式表示出的面积,代入已知等式,再将,即可求解.【题目详解】在中,因为,由正弦定理,可得,因为的周长为5,即,所以,又因为,即,所以.【题目点拨】本题主要考查了正弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.13、【解题分析】
设,,,则,,可得,再根据正弦函数的定义域和值域,求得函数的最值.【题目详解】解:函数,设,,则,,,,故当,即时,函数,故故答案为:;【题目点拨】本题主要考查求函数的值域,正弦函数的定义域和值域,体现了转化的数学思想,属于基础题.14、1【解题分析】
运用周期公式,求得,运用诱导公式及三角恒等变换,化简可得,即可得到满足条件的的值.【题目详解】解:,可得周期,,则满足的的个数为.故答案为:1.【题目点拨】本题考查三角函数的周期性及应用,考查三角函数的化简和求值,以及运算能力,属于中档题.15、2【解题分析】
直接根据弧长公式,可得.【题目详解】因为,所以,解得【题目点拨】本题主要考查弧长公式的应用.16、【解题分析】
根据等差数列的通项公式即可求解【题目详解】故答案为:【题目点拨】本题考查等差通项基本量的求解,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)先根据和项与通项关系得项之间递推关系,再根据等比数列定义以及通项公式求结果,(2)根据错位相减法求结果.【题目详解】(1)因为,所以当时,,相减得,,当时,,因此数列为首项为,2为公比的等比数列,(2),所以,则2,两式相减得.【题目点拨】本题考查错位相减法求和以及由和项求通项,考查基本求解能力,属中档题.18、(I),;(II).【解题分析】试题分析:(I)根据频率直方图的相关概率易求,依据样本估计总体的思想可得该校高一年级学生成绩是合格等级的概率;(II)记“至少有一名学生是等级”事件为,求事件对立事件的的概率,可得.试题解析:(I)由题意可知,样本容量因为成绩是合格等级人数为:人,抽取的50人中成绩是合格等级的频率为,依据样本估计总体的思想,所以,该校高一年级学生成绩是合格等级的概率为(II)由茎叶图知,等级的学生共有3人,等级学生共有人,记等级的学生为,等级学生为,则从8名学生中随机抽取2名学生的所有情况为:共28个基本事件记“至少有一名学生是等级”事件为,则事件的可能结果为共10种因此考点:1、频率分布直方图;2、古典概型.19、(1);(2)【解题分析】
(1)利用零点讨论法解绝对值不等式;(2)利用绝对值三角不等式得到a+b=2,再利用基本不等式求的最小值.【题目详解】(1)当,时,,得或或,解得:,∴不等式的解集为.(2),∴,∴,当且仅当,时取等号.∴的最小值为.【题目点拨】本题主要考查零点讨论法解绝对值不等式,考查绝对值三角不等式和基本不等式求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)值域为.(2)【解题分析】
(1)由向量,,利用数量积运算得到;由,得到,利用整体思想转化为正弦函数求值域.(2)不等式,转化为,利用整体思想,转化为三角不等式,利用单位圆或正弦函数的图象求解.【题目详解】(1)因为,,所以.因为,所以,所以,所以,所以在区间上的值域为.(2)由,得,即.所以,解得,不等式的解集为.【题目点拨】本题主要考查了向量与三角函数的综合应用,还考查了运算求解的能力,属于中档题.21、(1)(2)证明见解析【解题分析】
(1)直接利用三角形的面积公式求得,再由余弦定理列方程求出结果;(2)两次利用正弦定理,结合两角差的正弦公式、二倍角的正弦公式进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政组织中的合作创新实践与成果分析试题及答案
- 数据结构与算法题目试题及答案
- 地产合资公司管理制度
- 宾馆安全疏散管理制度
- 卫生保洁安全管理制度
- 医用耗材酒精管理制度
- 华为体系文件管理制度
- 发动机检测仪管理制度
- 安全警示标牌管理制度
- 公共卫生资金管理制度
- 新疆开放大学2025年春《国家安全教育》形考作业1-4终考作业答案
- 风对起飞和着陆影响及修正和风切变完整版课件
- 环网柜基础知识培训课程完整版课件
- 大数据时代的互联网信息安全题库
- DL∕T 1776-2017 电力系统用交流滤波电容器技术导则
- 浙江省绍兴市上虞区2021-2022学年六年级下学期期末质量检测英语试题(word版无答案无听力音频和原文)
- 《交通调查与数据分析》课程教学大纲(本科)
- 两轮自平衡小车的设计毕业设计论文
- 推进中国法治进程的10大案件
- 下面讲上品往生后的情形
- 某日企薪酬制
评论
0/150
提交评论