山东省临沂市兰陵县东苑高级中学2024届高一数学第二学期期末统考模拟试题含解析_第1页
山东省临沂市兰陵县东苑高级中学2024届高一数学第二学期期末统考模拟试题含解析_第2页
山东省临沂市兰陵县东苑高级中学2024届高一数学第二学期期末统考模拟试题含解析_第3页
山东省临沂市兰陵县东苑高级中学2024届高一数学第二学期期末统考模拟试题含解析_第4页
山东省临沂市兰陵县东苑高级中学2024届高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省临沂市兰陵县东苑高级中学2024届高一数学第二学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,向量,则向量()A. B. C. D.2.下列平面图形中,通过围绕定直线旋转可得到如图所示几何体的是()A. B. C. D.3.在中,角的对边分别为.若,,,则边的大小为()A.3 B.2 C. D.4.已知直线和,若,则实数的值为A.1或 B.或 C.2或 D.或5.已知集合A={1,2,3,4},B={2,3,4,5},则A∩B中元素的个数是()A.1 B.2 C.3 D.46.已知在中,,且,则的值为()A. B. C. D.7.数列{an}的通项公式an=,若{an}前n项和为24,则n为().A.25 B.576 C.624 D.6258.等差数列中,若,则=()A.11 B.7 C.3 D.29.已知锐角三角形的边长分别为1,3,,则的取值范围是()A. B. C. D.10.如图,正方体的棱长为1,线段上有两个动点E、F,且,则下列结论中错误的是A.B.C.三棱锥的体积为定值D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知满足约束条件,则的最大值为__________.12.一湖中有不在同一直线的三个小岛A、B、C,前期为开发旅游资源在A、B、C三岛之间已经建有索道供游客观赏,经测量可知AB两岛之间距离为3公里,BC两岛之间距离为5公里,AC两岛之间距离为7公里,现调查后发现,游客对在同一圆周上三岛A、B、C且位于(优弧)一片的风景更加喜欢,但由于环保、安全等其他原因,没办法尽可能一次游览更大面积的湖面风光,现决定在上选择一个点D建立索道供游客游览,经研究论证为使得游览面积最大,只需使得△ADC面积最大即可.则当△ADC面积最大时建立索道AD的长为______公里.(注:索道两端之间的长度视为线段)13.已知,,则______.14.已知直线,圆O:上到直线的距离等于2的点有________个。15.过点作圆的两条切线,切点分别为,则=.16.如图甲是第七届国际数学教育大会(简称)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中,如果把图乙中的直角三角形继续作下去,记的长度构成数列,则此数列的通项公式为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象与轴正半轴的交点为,.(1)求数列的通项公式;(2)令(为正整数),问是否存在非零整数,使得对任意正整数,都有?若存在,求出的值,若不存在,请说明理由.18.在中,、、分别是内角、、的对边,且.(1)求角的大小;(2)若,的面积为,求的周长.19.已知.(1)解关于的不等式;(2)若不等式的解集为,求实数,的值.20.等差数列中,公差,,.(1)求的通项公式;(2)若,求数列的前项和.21.如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.(Ⅰ)求证:AF∥平面PEC;(Ⅱ)求证:平面PEC⊥平面PCD.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

由向量减法法则计算.【题目详解】.故选A.【题目点拨】本题考查向量的减法法则,属于基础题.2、B【解题分析】A.是一个圆锥以及一个圆柱;C.是两个圆锥;D.一个圆锥以及一个圆柱;所以选B.3、A【解题分析】

直接利用余弦定理可得所求.【题目详解】因为,所以,解得或(舍).故选A.【题目点拨】本题主要考查了余弦定理在解三角形中的应用,考查了一元二次方程的解法,属于基础题.4、C【解题分析】

利用直线与直线垂直的性质直接求解.【题目详解】∵直线和,若,∴,得,解得或,∴实数的值为或.故选:C.【题目点拨】本题考查直线与直线垂直的性质等基础知识,考查运算求解能力,属于基础题.5、C【解题分析】

求出A∩B即得解.【题目详解】由题得A∩B={2,3,4},所以A∩B中元素的个数是3.故选:C【题目点拨】本题主要考查集合的交集的计算,意在考查学生对该知识的理解掌握水平,属于基础题.6、C【解题分析】

先确定D位置,根据向量的三角形法则,将用,表示出来得到答案.【题目详解】故答案选C【题目点拨】本题考查了向量的加减,没有注意向量方向是容易犯的错误.7、C【解题分析】an==-(),前n项和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故选C.8、A【解题分析】

根据和已知条件即可得到.【题目详解】等差数列中,故选A.【题目点拨】本题考查了等差数列的基本性质,属于基础题.9、B【解题分析】

根据大边对大角定理知边长为所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出的取值范围.【题目详解】由题意知,边长为所对的角不是最大角,则边长为或所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到,由于,解得,故选C.【题目点拨】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:为锐角;为直角;为钝角.10、D【解题分析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,则AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误。选D。二、填空题:本大题共6小题,每小题5分,共30分。11、57【解题分析】

作出不等式组所表示的可行域,平移直线,观察直线在轴的截距取最大值时的最优解,再将最优解代入目标函数可得出目标函数的最大值.【题目详解】作出不等式组所表示的可行域如下图所示:平移直线,当直线经过可行域的顶点时,该直线在轴上的截距取最大值,此时,取最大值,即,故答案为.【题目点拨】本题考查简单的线性规划问题,考查线性目标函数的最值问题,一般利用平移直线结合在坐标轴上的截距取最值时,找最优解求解,考查数形结合数学思想,属于中等题.12、【解题分析】

根据题意画出草图,根据余弦定理求出的值,设点到的距离为,可得,分析可知取最大时,取最大值,然后再对为中点和不是中点两种情况分析,可得的最大值为,然后再根据圆的有关性质和正弦定理,即可求出结果.【题目详解】根据题意可作出及其外接圆,连接,交于点,连接,如下图:在中,由余弦定理,由为的内角,可知,所以.设的半径为,点到的距离为,点到的距离为,则,故取最大时,取最大值.①当为中点时,由垂径定理知,即,此时,故;②当不是中点时,不与垂直,设此时与所成角为,则,故;由垂线段最短知,此时;综上,当为中点时,到的距离最大,最大值为;由圆周角定理可知,,由垂径定理知,此时点为优弧的中点,故,则,在中,由正弦定理得所以.所以当△ADC面积最大时建立索道AD的长为公里.故答案为:.【点评】本题考查了正弦定理、余弦定理在解决实际问题中的应用,属于中档题.13、【解题分析】

利用同角三角函数的基本关系求得的值,利用二倍角的正切公式,求得,再利用两角和的正切公式,求得的值,再结合的范围,求得的值.【题目详解】,,,,,,故答案:.【题目点拨】本题主要考查同角三角函数的基本关系,两角和的正切公式,二倍角的正切公式,根据三角函数的值求角,属于基础题.14、3;【解题分析】

根据圆心到直线的距离和半径之间的长度关系,可通过图形确定所求点的个数.【题目详解】由圆的方程可知,圆心坐标为,半径圆心到直线的距离:如上图所示,此时,则到直线距离为的点有:,共个本题正确结果:【题目点拨】本题考查根据圆与直线的位置关系求解圆上点到直线距离为定值的点的个数,关键是能够根据圆心到直线的距离确定直线的大致位置,从而根据半径长度确定点的个数.15、【解题分析】

如图,连接,在直角三角形中,所以,,,故.考点:1.直线与圆的位置关系;2.平面向量的数量积.16、【解题分析】

由图可知,由勾股定理可得,利用等差数列的通项公式求解即可.【题目详解】根据图形,因为都是直角三角形,,是以1为首项,以1为公差的等差数列,,,故答案为.【题目点拨】本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,.【解题分析】

(1)把点A带入即可(2)根据(1)的计算出、,再解不等式即可【题目详解】(1)设,得,.所以;(2),若存在,满足恒成立即:,恒成立当为奇数时,当为偶数时,所以,故:.【题目点拨】本题考查了数列通项的求法,以及不等式恒成立的问题,不等式恒成立是一个难点,也是高考中的常考点,本题属于较难的题。18、(1)(2)【解题分析】

(1)由正弦定理,两角和的正弦函数公式化简已知等式可得,由,可求,结合范围,可求.(2)利用三角形的面积公式可求,进而根据余弦定理可得,即可计算得解的周长的值.【题目详解】解:(1)∵,∴由正弦定理可得:,即,∵,∴,∵,∴.(2)∵,,的面积为,,∴,∴由余弦定理可得:,∴解得:,∴的周长.【题目点拨】本题主要考查了正弦定理,两角和的正弦函数公式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.19、(1);(2)或.【解题分析】

(1),再解一元二次不等式即可;(2)由题意得,,代入即可求出实数,的值.【题目详解】(1)∵,∴,∴,解得,∴原不等式的解集为;(2)由题意得,,即,解得或,∴或.【题目点拨】本题主要考查一元二次不等式的解法,考查三个二次之间的关系,考查转化与化归思想,属于基础题.20、(1)(2)【解题分析】

(1)由和可列出方程组,解出和,即得通项公式;(2)将(1)中所得通项公式代入,列项,用裂项相消法求的前n项和.【题目详解】解:(1)因为,,所以因为,所以故的通项公式为.(2)因为,所以.【题目点拨】本题考查求等差数列通项公式和用裂项相消法求数列前n项和,是典型考题.21、(Ⅰ)见解析(Ⅱ)见解析【解题分析】

(Ⅰ)取PC的中点G,连结FG、EG,AF∥EG又EG⊂平面PCE,AF⊄平面PCE,AF∥平面PCE;(Ⅱ)由(Ⅰ)得EG∥AF,只需证明AF⊥面PDC,即可得到平面PEC⊥平面PCD.【题目详解】证明:(Ⅰ)取PC的中点G,连结FG、EG,∴FG为△CDP的中位线,FG∥CD,FG=CD.∵四边形A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论