版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省昆明市黄冈实验学校数学高一下期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图象,只需把函数的图象上的所有的点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位2.若集合A={x|2≤x<4}, B={x|x>3}A.{x|3≤x<4} B.{x|3<x<4} C.{x|2≤x<3} D.{x|2≤x≤3}3.设,是平面内一组基底,若,,,则以下不正确的是()A. B. C. D.4.为了得到函数的图像,只需把函数的图像A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位5.若,,那么在方向上的投影为()A.2 B. C.1 D.6.已知圆心为C(6,5),且过点B(3,6)的圆的方程为()A. B.C. D.7.设集合,则A. B. C. D.8.若函数的图象上所有点纵坐标不变,横坐标伸长到原来的2倍,再向左平行移动个单位长度得函数的图象,则函数在区间内的所有零点之和为()A. B. C. D.9.下列函数中,既是偶函数,又在上递增的函数的个数是().①;②;③;④向右平移后得到的函数.A. B. C. D.10.已知函数,则下列说法正确的是()A.图像的对称中心是B.在定义域内是增函数C.是奇函数D.图像的对称轴是二、填空题:本大题共6小题,每小题5分,共30分。11.设数列满足,,且,用表示不超过的最大整数,如,,则的值用表示为__________.12.已知,则__________.13.设是等差数列的前项和,若,则___________.14.已知向量,且,则_______.15.已知角α的终边与单位圆交于点.则___________.16.已知向量,,且,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列的前项和为,数列是等比数列,满足,,,,.(1)求数列和的通项公式;(2)令,求数列的前项和.18.已知数列的前项和为,且,.(1)试写出数列的任意前后两项(即、)构成的等式;(2)用数学归纳法证明:.19.已知关于的不等式.(1)若不等式的解集为,求实数的值;(2)若不等式的解集为,求实数的取值范围.20.已知.(1)求;(2)求向量与的夹角的余弦值.21.已知数列满足,.(1)证明:是等比数列;(2)求数列的前n项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
把系数2提取出来,即即可得结论.【题目详解】,因此要把图象向右平移个单位.故选D.【题目点拨】本题考查三角函数的图象平移变换.要注意平移变换是加减平移单位,即向右平移个单位得图象的解析式为而不是.2、B【解题分析】
根据交集定义计算.【题目详解】由题意A∩B={x|3<x<4}.故选B.【题目点拨】本题考查集合的交集运算,属于基础题.3、D【解题分析】
由已知及平面向量基本定理可得:,问题得解.【题目详解】因为,是平面内一组基底,且,由平面向量基本定理可得:,所以,所以D不正确故选D【题目点拨】本题主要考查了平面向量基本定理的应用,还考查了同角三角函数的基本关系,属于较易题.4、B【解题分析】试题分析:记函数,则函数∵函数f(x)图象向右平移单位,可得函数的图象∴把函数的图象右平移单位,得到函数的图象,故选B.考点:函数y=Asin(ωx+φ)的图象变换.5、C【解题分析】
根据定义可知,在方向上的投影为,代入即可求解.【题目详解】,,那么在方向上的投影为.故选:C.【题目点拨】本题考查向量数量积的几何意义,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础试题.6、A【解题分析】
在知道圆心的情况下可设圆的标准方程为,然后根据圆过点B(3,6),代入方程可求出r的值,得到圆的方程.【题目详解】因为,又因为圆心为C(6,5),所以所求圆的方程为,因为此圆过点B(3,6),所以,所以,因而所求圆的方程为.考点:圆的标准方程.7、B【解题分析】,选B.【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.8、C【解题分析】
先由诱导公式以及两角和差公式得到函数表达式,再根据函数伸缩平移得到,将函数零点问题转化为图像交点问题,进而得到结果.【题目详解】函数横坐标伸长到原来的2倍得到,再向左平行移动个单位长度得函数,函数在区间内的所有零点,即的所有零点之和,画出函数和函数的图像,有6个交点,故得到根之和为.故答案为:C.【题目点拨】本题考查了三角函数的化简问题,以及函数零点问题。于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数一个非常函数,注意让非常函数式子尽量简单一些。9、B【解题分析】
将①②③④中的函数解析式化简,分析各函数的奇偶性及其在区间上的单调性,可得出结论.【题目详解】对于①中的函数,该函数为偶函数,当时,,该函数在区间上不单调;对于②中的函数,该函数为偶函数,且在区间上单调递减;对于③中的函数,该函数为偶函数,且在区间上单调递增;对于④,将函数向右平移后得到的函数为,该函数为奇函数,且当时,,则函数在区间上不单调.故选:B.【题目点拨】本题考查三角函数单调性与奇偶性的判断,同时也考查了三角函数的相位变换,熟悉正弦、余弦和正切函数的基本性质是判断的关键,考查推理能力,属于中等题.10、A【解题分析】
根据正切函数的图象与性质逐一判断即可.【题目详解】.,由得,,的对称中心为,,故正确;.在定义域内不是增函数,故错误;.为非奇非偶函数,故错误;.的图象不是轴对称图形,故错误.故选.【题目点拨】本题考查了正切函数的图象与性质,考查了整体思想,意在考查学生对这些知识的理解掌握水平,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由题设可得知该函数的最小正周期是,令,则由等差数列的定义可知数列是首项为,公差为的等差数列,即,由此可得,将以上个等式两边相加可得,即,所以,故,应填答案.点睛:解答本题的关键是借助题设中提供的数列递推关系式,先求出数列的通项公式,然后再运用列项相消法求出,最后借助题设中提供的新信息,求出使得问题获解.12、【解题分析】
对已知等式的左右两边同时平方,利用同角的三角函数关系式和二倍角的正弦公式,可以求出的值,再利用二倍角的余弦公式可以求出.【题目详解】因为,所以,即,所以.【题目点拨】本题考查了同角的三角函数关系,考查了二倍角的正弦公式和余弦公式,考查了数学运算能力.13、1.【解题分析】
由已知结合等差数列的性质求得,代入等差数列的前项和得答案.【题目详解】解:在等差数列中,由,得,,则,故答案为:1.【题目点拨】本题主要考查等差数列的通项公式,考查等差数列的性质,考查了等差数列前项和的求法,属于基础题.14、【解题分析】
先由向量共线,求出,再由向量模的坐标表示,即可得出结果.【题目详解】因为,且,所以,解得,所以,因此.故答案为【题目点拨】本题主要考查求向量的模,熟记向量共线的坐标表示,以及向量模的坐标表示即可,属于基础题型.15、【解题分析】
直接利用三角函数的坐标定义求解.【题目详解】由题得.故答案为【题目点拨】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.16、【解题分析】
根据的坐标表示,即可得出,解出即可.【题目详解】,,.【题目点拨】本题主要考查平行向量的坐标关系应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解题分析】
(1)由是等差数列,,,可求出,由是等比数列,,,,可求出;(2)将和的通项公式代入,则,利用裂项相消求和法可求出.【题目详解】(1),,,解得.又,,.(2)由(1),得【题目点拨】本题考查了等差数列和等比数列的通项公式的求法,考查了用裂项相消求数列的前项和,属于中档题.18、(1);(2)证明见解析.【解题分析】
(1)由,可得出,两式相减,化简即可得出结果;(2)令代入求出的值,再由求出的值,可验证和时均满足,并假设当时等式成立,利用数学归纳法结合数列的递推公式推导出时等式也成立,综合可得出结论.【题目详解】(1)对任意的,由可得,上述两式相减得,化简得;(2)①当时,由可得,解得,满足;②当时,由于,则,满足;③假设当时,成立,则有,由于,则.这说明,当时,等式也成立.综合①②③,.【题目点拨】本题考查数列递推公式的求解,同时也考查了利用数学归纳法证明数列的通项公式,考查计算能力与推理能力,属于中等题.19、(1)(2)【解题分析】
(1)不等式的解集为说明和1是的两个实数根,运用韦达定理,可以求出实数的值;(2)不等式的解集为,只需,或即可,解不等式组求出实数的取值范围.【题目详解】(1)若关于的不等式的解集为,则和1是的两个实数根,由韦达定理可得,求得.(2)若关于的不等式解集为,则,或,求得或,故实数的取值范围为.【题目点拨】本题考查了已知一元二次不等式的解集求参问题,考查了数学运算能力20、(1);(2).【解题分析】
(1)根据题意求出,即可求解;(2)向量与的夹角的余弦值为:代入求值即可得解.【题目详解】(1)由题:,解得:(2)向量与的夹角的余弦值为:【题目点拨】此题考查平面向量数量积的运算,根据运算法则求解数量积和模长,求解向量夹角的余弦值.21、(1)见解析;(2).【解题分析】
(1)由题设,化简得,即可证得数列为等比数列.(2)由(1),根据等比数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024产品销售区域代理合同模板
- 2024租车合同协议书公司单位租车协议书
- 2024版独家代理合同样本
- 2024年广场文化建设施工合同
- 2024年度货物采购与供应协议
- 陀螺课件图片教学课件
- 2024年度劳动合同标的:高级管理人员雇佣
- 2024解除土地流转合同
- 2024年度环保项目技术研发与许可使用合同
- 2024年度房屋买卖合同(高档住宅)
- 2024时事政治考试题库(基础题)
- TSDPIA 05-2022 宠物猫砂通用技术规范
- 常用钢材磁特性曲线
- 浅谈地铁通信系统漏缆施工
- 安全工器具试验标准及周期表
- 机器人学_机器人雅可比矩阵
- 家长会邀请函模板
- 空调工程评标办法
- 血液透析血标本采集
- 孙子兵法与兵家智慧
- 果树病虫害防治管理论文
评论
0/150
提交评论