版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省吉林市第一中学2024届数学高一下期末达标测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线l:x+y﹣1=0与圆C:x2+y2=1交于两点A、B,则弦AB的长度为()A.2 B. C.1 D.2.三棱锥中,互相垂直,,是线段上一动点,若直线与平面所成角的正切的最大值是,则三棱锥的外接球的表面积是()A. B. C. D.3.已知点G为的重心,若,,则=()A. B. C. D.4.已知平面向量,,且,则=A. B. C. D.5.已知,与的夹角,则在方向上的投影是()A. B. C.1 D.6.在区间[–1,1]上任取两个数x和y,则x2+y2≥1的概率为()A. B.C. D.7.已知函数,则在上的单调递增区间是()A. B. C. D.8.若三棱锥的所有顶点都在球的球面上,平面,,,且三棱锥的体积为,则球的体积为()A. B. C. D.9.如图所示,在正四棱锥中,分别是,,的中点,动点在线段上运动时,下列结论不恒成立的是().A.与异面 B.面 C. D.10.已知点A(1,0),B(0,1),C(–2,–3),则△ABC的面积为A.3 B.2 C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于,则其外接球的体积为______.12.在中,角,,所对的边分别为,,,若的面积为,且,,成等差数列,则最小值为______.13.正项等比数列中,存在两项使得,且,则的最小值为______.14.已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________15.若角的终边经过点,则______.16.已知,,若,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为数列的前项和,.(1)求数列的通项公式;(2)设,求数列的前项和.18.已知(1)化简;(2)若,求的值.19.从高三学生中抽出50名学生参加数学竞赛,由成绩得到如图所示的频率分布直方图.利用频率分布直方图求:(1)这50名学生成绩的众数与中位数;(2)这50名学生的平均成绩.(答案精确到0.1)20.现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.(1)若则仓库的容积是多少?(2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?21.已知在四棱锥中,底面是矩形,平面,,分别是,的中点,与平面所成的角的正切值是;(1)求证:平面;(2)求二面角的正切值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
利用直线和圆相交所得弦长公式,计算出弦长.【题目详解】圆的圆心为,半径为,圆心到直线的距离为,所以.故选:B【题目点拨】本小题主要考查直线和圆相交所得弦长的计算,属于基础题.2、B【解题分析】是线段上一动点,连接,∵互相垂直,∴就是直线与平面所成角,当最短时,即时直线与平面所成角的正切的最大.此时,,在直角△中,.三棱锥扩充为长方体,则长方体的对角线长为,∴三棱锥的外接球的半径为,∴三棱锥的外接球的表面积为.选B.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.3、B【解题分析】
由重心分中线为,可得,又(其中是中点),再由向量的加减法运算可得.【题目详解】设是中点,则,又为的重心,∴.故选B.【题目点拨】本题考查向量的线性运算,解题关键是掌握三角形重心的性质,即重心分中线为两段.4、B【解题分析】
根据向量平行求出x的值,结合向量模长的坐标公式进行求解即可.【题目详解】且,则故故选B.【题目点拨】本题考查向量模长的计算,根据向量平行的坐标公式求出x的值是解决本题的关键.5、A【解题分析】
根据向量投影公式计算即可【题目详解】在方向上的投影是:故选:A【题目点拨】本题考查向量投影的概念及计算,属于基础题6、A【解题分析】由题意知,所有的基本事件构成的平面区域为,其面积为.设“在区间[-1,1]上任选两个数,则”为事件A,则事件A包含的基本事件构成的平面区域为,其面积为.由几何概型概率公式可得所求概率为.选A.7、C【解题分析】
先令,则可求得的单调区间,再根据,对赋值进而限定范围即可【题目详解】由题,令,则,当时,在上单调递增,则当时,的单调增区间为,故选:C【题目点拨】本题考查正弦型函数的单调区间,属于基础题8、A【解题分析】
由的体积计算得高,已知将三棱锥的外接球,转化为长2,宽2,高的长方体的外接球,求出半径,可得答案.【题目详解】∵,,故三棱锥的底面面积为,由平面,得,又三棱锥的体积为,得,所以三棱锥的外接球,相当于长2,宽2,高的长方体的外接球,故球半径,得,故外接球的体积.故选:A.【题目点拨】本题考查了三棱锥外接球的体积,三棱锥体积公式的应用,根据已知计算出球的半径是解答的关键,属于中档题.9、D【解题分析】如图所示,连接AC、BD相交于点O,连接EM,EN.(1)由正四棱锥S−ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故C正确.(2)由异面直线的定义可知:EP与SD是异面直线,故A正确;(3)由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此B正确.(4)当P与M重合时,有∥,其他情况都是异面直线即D不正确.故选D点睛:本题抓住正四棱锥的特征,顶点在底面的投影为底面正方形的中心,即SO⊥底面ABCD,EP为动直线,所以要证EP∥面,可先证EP所在的平面平行于面SBD,要证⊥可先证AC垂直于EP所在的平面,所以化动为静的处理思想在立体中常用.10、A【解题分析】
由两点式求得直线的方程,利用点到直线距离公式求得三角形的高,由两点间距离公式求得的长,从而根据三角形面积公式可得结果.【题目详解】∵点A(1,0),B(0,1),∴直线AB的方程为x+y–1=0,,又∵点C(–2,–3)到直线AB的距离为,∴△ABC的面积为S=.故选A.【题目点拨】本题主要考查两点间的距离公式,点到直线的距离公式、三角形面积公式以及直线方程的应用,意在考查综合运用所学知识解答问题的能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
先判断球心在上,再利用勾股定理得到半径,最后计算体积.【题目详解】三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于为中点,为外心,连接,平面球心在上设半径为故答案为【题目点拨】本题考查了三棱锥外接球的体积,意在考查学生的空间想象能力和计算能力.12、4【解题分析】
先根据,,成等差数列得到,再根据余弦定理得到满足的等式关系,而由面积可得,利用基本不等式可求的最小值.【题目详解】因为,,成等差数列,,故.由余弦定理可得.由基本不等式可以得到,当且仅当时等号成立.因为,所以,所以即,当且仅当时等号成立.故填4.【题目点拨】三角形中与边有关的最值问题,可根据题设条件找到各边的等式关系或角的等量关系,再根据边的关系式的结构特征选用合适的基本不等式求最值,也可以利用正弦定理把与边有关的目标代数式转化为与角有关的三角函数式后再求其最值.13、【解题分析】
先由已知求出公比,然后由求出满足的关系,最后求出的所有可能值得最小值.【题目详解】设数列公比为,由得,∴,解得(舍去),由得,,∵,所以只能取,依次代入,分别为2,,2,,,最小值为.故答案为:.【题目点拨】本题考查等比数列的性质,考查求最小值问题.解题关键是由等比数列性质求出满足的关系.接着求最小值,容易想到用基本不等式求解,但本题实质上由于,因此对应的只有5个,可以直接代入求值,然后比较大小即可.14、【解题分析】四棱锥的侧面积是15、【解题分析】
利用三角函数的定义可计算出,然后利用诱导公式可计算出结果.【题目详解】由三角函数的定义可得,由诱导公式可得.故答案为:.【题目点拨】本题考查利用三角函数的定义和诱导公式求值,考查计算能力,属于基础题.16、【解题分析】
根据向量垂直的坐标表示列出等式,求出,再利用二倍角公式、平方关系即可求出.【题目详解】由得,,解得,.【题目点拨】本题主要考查了向量垂直的坐标表示以及二倍角公式、平方关系的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)由即可求得通项公式;(2)由(1)中所求的,以及,可得,再用裂项求和求解前项和即可.【题目详解】(1)当时,整理得,即数列是以首项为,公比为2的等比数列,故(2)由(1)得,,故=故数列的前项和.【题目点拨】本题考查由和之间的关系求解数列的通项公式,以及用裂项求和求解前项和,属数列综合基础题.18、(1);(2)【解题分析】
(1)直接利用诱导公式化简求解即可;(2)由(1)可求出,然后利用同角三角函数的基本关系式将化成只含有的表达式,代入即可求解.【题目详解】(1)(2)因为,所以,由于将代入,得【题目点拨】本题主要考查诱导公式以及同角三角函数基本关系式的应用,意在考查学生的数学建模能力和运算能力.19、(1)众数为75分,中位数为分;(2)76.2分【解题分析】
(1)由众数的概念及频率分布直方图可求得众数,根据中位数的概念可求得中位数;.(2)由平均数的概念和频率直方图可求得平均数.【题目详解】(1)由众数的概念及频率分布直方图可知,这50名学生成绩的众数为75分.因为数学竞赛成绩在的频率为,数学竞赛成绩在的频率为.所以中位数为.(2)这50名学生的平均成绩为.【题目点拨】本题考查根据频率直方图求得数字特征,关键在于理解各数字特征的含义,属于基础题.20、(1)312(2)【解题分析】试题分析:(1)明确柱体与锥体积公式的区别,分别代入对应公式求解;(2)先根据体积关系建立函数解析式,,然后利用导数求其最值.试题解析:解:(1)由PO1=2知OO1=4PO1=8.因为A1B1=AB=6,所以正四棱锥P-A1B1C1D1的体积正四棱柱ABCD-A1B1C1D1的体积所以仓库的容积V=V锥+V柱=24+288=312(m3).(2)设A1B1=a(m),PO1=h(m),则0<h<6,OO1=4h.连结O1B1.因为在中,所以,即于是仓库的容积,从而.令,得或(舍).当时,,V是单调增函数;当时,,V是单调减函数.故时,V取得极大值,也是最大值.因此,当m时,仓库的容积最大.【考点】函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点等方面进行强化,注重培养将文字语言转化为数学语言的能力,强化构建数学模型的几种方法.而江苏高考的应用题往往需结合导数知识解决相应的最值问题,因此掌握利用导数求最值方法是一项基本要求,需熟练掌握.21、(1)见证明;(2)【解题分析】
(1)取的中点,连接,通过证明四边形是平行四边形,证得,从而证得平面.(2)连接,证得为与平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装裱书画合同书
- 完整版夫妻婚内忠诚协议
- 2024年度服装生产设备购置合同
- 借用他人名义购房协议书
- 家具专卖店装修合同下载
- 2024年度建筑节能改造合同4篇
- 污水运输合同协议书
- 土地测绘合同范本
- 创新精神课件英文
- 应当自用工之日起几日内订立书面劳动合同
- 2024年糖尿病指南解读
- 青少年预防艾滋病班会
- 国家太空安全
- 仓库年终安全培训
- 10.1 爱护身体(大单元教学设计) -2024-2025学年统编版道德与法治七年级上册
- 生物人教版2024版七年级上册2.2.1无脊椎动物课件02
- ARCI阿西工作法-副本
- 创业管理实习报告
- 文创产品定制合同范本
- 贲门缩窄术后的护理
- 沪教牛津版英语2024七年级上册全册知识清单(记忆版)
评论
0/150
提交评论